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TOPOLOGICALLY BASED FRACTIONAL DIFFUSION AND
EMERGENT DYNAMICS WITH SHORT-RANGE INTERACTIONS\ast 

ROMAN SHVYDKOY\dagger AND EITAN TADMOR\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We introduce a new class of models for emergent dynamics. It is based on a new
communication protocol which incorporates two main features: short-range kernels which restrict
the communication to local metric balls, and anisotropic communication kernels, adapted to the
local density in these balls, which form topological neighborhoods. We prove flocking behavior---the
emergence of global alignment for regular, nonvacuous solutions of the n-dimensional models based
on short-range topological communication. Moreover, global regularity (and hence unconditional
flocking) of the one-dimensional model is proved via an application of a De Giorgi-type method. To
handle the nonsymmetric singular kernels that arise with our topological communication, we develop
a new analysis for local fractional elliptic operators (interesting in its own right) encountered in the
construction of our class of models.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . flocking, alignment, collective behavior, emergent dynamics, fractional diffusion,
Cucker--Smale, Motsch--Tadmor

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 92D25, 35Q35, 76N10

\bfD \bfO \bfI . 10.1137/19M1292412

1. Introduction and statement of main results.

1.1. Emergent dynamics: Long-range and short-range kernels. A fasci-
nating aspect of collective dynamics is self-organization, in which higher order patterns
emerge from an underlying dynamics driven by short-range interactions. This type
of collective dynamics is found in a wide variety of biological, social, and technologi-
cal contexts. We investigate this phenomenon in the context of canonical models for
flocking and swarming. A key feature in these models is alignment, where a crowd
described as a continuum with density \rho (t,x) : \BbbR + \times \BbbR n \mapsto \rightarrow \BbbR + aligns its macroscopic
velocity, u(t,x) : \BbbR + \times \BbbR n \mapsto \rightarrow \BbbR n, over the local neighborhoods N(x),

(1.1)

\left\{     
\rho t +\nabla \bfx \cdot (\rho u) = 0,

ut + u \cdot \nabla \bfx u =

\int 
N(\bfx )

\phi (x,y)(u(t,y) - u(t,x))\rho (t,y) dy.

The dynamics is subject to prescribed initial conditions, (\rho 0,u0), with two main
configurations: either compactly supported density diam \{ supp \rho 0\} \leqslant D0 in \BbbR n, or

\ast Received by the editors October 9, 2019; accepted for publication (in revised form) August 27,
2020; published electronically November 19, 2020. The U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by
these rights.

https://doi.org/10.1137/19M1292412
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : The work of the first author was partially supported by the National Science Founda-

tion grant DMS-1515705, the Simons Foundation, the College of LAS, University of Illinois, Chicago,
and the ERC European Union Horizon 2020 grant 740623. The work of the second author was par-
tially supported by the National Science Foundation grants DMS16-13911, RNMS11-07444 (KI- Net),
and the ONR grant N00014-1812465.

\dagger Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago,
IL 60607 USA (shvydkoy@uic.edu).

\ddagger Department of Mathematics, Center for Scientific Computation and Mathematical Modeling
(CSCAMM), and Institute for Physical Sciences \& Technology (IPST), University of Maryland,
College Park, MD 20742-3289 USA (tadmor@umd.edu).

5792

D
ow

nl
oa

de
d 

11
/2

0/
20

 to
 1

28
.8

.6
8.

11
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/19M1292412
mailto:shvydkoy@uic.edu
mailto:tadmor@umd.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EMERGENT DYNAMICS WITH SHORT-RANGE INTERACTIONS 5793

over the torus \BbbT n. System (1.1) corresponds to the large-crowd description of a
discrete crowd, consisting of N \gg 1 agents (of birds, insects, fish, robots, etc.) which
align their microscopic velocities, \{ vi(t)\} Ni=1 \in \BbbR n,

(1.2) \.vi =
\sum 

j\in N(\bfx i)

\phi 
\bigl( 
xi(t),xj(t)

\bigr) 
(vj(t) - vi(t)), \.xi = vi.

Different models distinguish themselves with different choices of communication ker-
nels, \phi (\cdot , \cdot ) \geqslant 0, which dictate the neighborhoods N(x) := \{ y | \phi (x,y) > 0\} . The
most notable examples found in the literature [34, 1, 44, 56, 3, 20, 21, 38] employ
radial kernels depending on the metric distance

(1.3) \phi (x,y) = \varphi (| x - y| );

that is, communication is taking place in balls, N(x) = BR0
(x), where R0 is the

diameter of supp\varphi :

(1.4)

\left\{     
\rho t +\nabla \bfx \cdot (\rho u) = 0,

ut + u \cdot \nabla \bfx u =

\int 
BR0

(\bfx )

\varphi (| x - y| )(u(t,y) - u(t,x))\rho (t,y) dy.

The communication kernels are in general unknown: their approximate shape is
either derived empirically [16, 2, 15, 14, 19, 11] or learned from the data [8, 36] or
postulated based on phenomenological arguments [57, 5, 4]. Since the precise form
of the communication kernel is in general not known, it is therefore imperative to
understand how general \varphi 's affect the large-time, large-crowd dynamics. It is here
that we make a distinction between long-range and short-range interactions.

Long-range interactions. Here, the support of \varphi is large enough, R0 \gg 1, so
that every part of the crowd is in direct communication with every other part. In
particular, if \varphi satisfies

(1.5) a ``fat tail"" condition:

\int \infty 
\varphi (r) dr = \infty ,

then supp \rho (t, \cdot ) remains within a finite diameter D\infty < \infty , and consequently, the
alignment dynamics (1.4) enforces the the crowd to ``aggregate"" around a limit-
ing velocity, u\infty \in \BbbR n. The flocking behavior in this case of long-range interac-
tions is captured by the statement ``smooth solutions must flock"" [53, 30]; namely,
if (\rho (t, \cdot ),u(t, \cdot )) \in L\infty \times W 1,\infty is a global strong solution of (1.4),(1.5) subject to
compactly supported initial data (\rho 0,u0), then there exists \eta > 0 (depending on D\infty )
such that u(t, \cdot ) flocks towards a limiting velocity u\infty ,
(1.6)

max
\bfx 

| u(t,x) - u\infty | \lesssim e - \eta t \rightarrow 0, u\infty =
P0

M0
, (M0,P0) :=

\int 
(1,u0)\rho 0(x) dx.

The unconditional flocking asserted in (1.6) is rooted in the corresponding statement
for the discrete dynamics (1.2) with long-range interactions (1.3), (1.5) [12, 20, 21,
28, 27, 26, 39].

The conditional statement for long-range interactions shifts the burden of proving
their flocking behavior to the regularity theory. Here we make a further distinction
between bounded and singular \varphi 's.
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5794 ROMAN SHVYDKOY AND EITAN TADMOR

For bounded kernels, global regularity in dimension n = 1, 2 holds if the initial
configuration satisfies certain threshold conditions [53, 13, 30]. Global regularity
(and hence flocking behavior) of (1.4) for any dimension but for small data in higher
order Sobolev spaces, \| u\| Hs+1 < \varepsilon 0(\| \rho 0\| Hs), was proved in [25]. The regularity
and flocking behavior of (1.4) with singular kernels \varphi (r) = r - \beta was studied in [43]
for weakly singular kernels, 0 < \beta < n (consult [40, 41, 42] for the corresponding
discrete case), and in [51, 49, 50, 23] for strongly singular kernels, \beta = n + \alpha , 0 <
\alpha < 2. In the latter case, the system (1.4) is endowed with a fractional parabolic
diffusion structure which enabled us to prove, at least in the one-dimensional case,
unconditional flocking behavior, independent of any initial threshold. We quote here
our main result of [51, 50] which will be echoed in the statements of this present
paper: for the system (1.4) with strongly singular kernel, \varphi (r) = r - (n+\alpha ), 0 < \alpha < 2,
on \BbbT , any nonvacuous initial data gives rise to a unique global solution, (\rho , u) \in 
L\infty ([0,\infty );Hs+\alpha \times Hs+1), s \geqslant 3, which converges to a flocking traveling wave,

\| u(t, \cdot ) - u\infty \| Hs + \| \rho (t, \cdot ) - \rho \infty (\cdot  - tu\infty )\| Hs - 1 \lesssim e - \eta t, t > 0, u\infty :=
P0

M0
.

The question of regularity (and hence flocking) for strongly singular kernels \varphi (r) =
r - (n+\alpha ) in dimensions n > 1 is open, with the exceptions of recent small initial data
results in [48] for H\"older spaces, | u0  - u\infty | \infty \lesssim (1 + \| \rho 0\| W 3,\infty + \| u0\| W 3,\infty ) - n with
2/3 < \alpha < 3/2, and in [22] for small Besov data \| u0\| B2 - \alpha 

n,1
+ \| \rho 0  - 1\| B1

n,1
\leqslant \varepsilon with

\alpha \in (1, 2).

Short-range interactions. The class of singular kernels \varphi (r) = r - \beta offers
a communication framework which emphasizes short-range interactions over long-
range interactions, yet their global support still reflects global communication. In
particular, strongly singular kernels, n < \beta < n + 2, demonstrate hydrodynamic
flocking for thinner tails than those sought in (1.5), yet their infinite support still
maintains global direct communication over all supp \rho (t, \cdot ).

This brings us back to the original question alluded to at the beginning---namely,
understanding self-organization driven by a purely local communication protocol. This
is the question we address in our present work in the context of general alignment
(1.1) with short-range singular communication kernels1

(1.7)
1| \bfx  - \bfy | <R0

| x - y| n+\alpha 
\lesssim \phi (x,y) \lesssim 

1| \bfx  - \bfy | <2R0

| x - y| n+\alpha 
, 0 < \alpha < 2.

It provides a first fundamental step in our understanding of emergent phenomena in
collective dynamics driven by short-range communication kernels.

It has been an open question whether the emergence of hydrodynamic flocking
survives the cut-off localization in (1.7). The situation is analogous to the scenario of
a discrete crowd with short-range communication, (1.2), which may fail to flock due
to finite-time loss of graph connectivity associated with the time-dependent adjacency
matrix \{ \phi (xi(t),xj(t))\} [39, sec. 2.2]. The subtle issue in the discrete case is that
a short-range time-dependent covering, \cup N

i=1Ni(t), may be unstable for a finite N ,
and one needs to assume the persistence of connectivity for all time [31] or at least
close enough to a constant state---so close that it does not allow connectivity to be lost
[55, 32]. At the level of hydrodynamic description (1.1), lack of connectivity manifests

1Here and throughout 1S denotes the characteristic function of a set S, and A \lesssim B means
A/B < C, where C is a fixed constant.
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EMERGENT DYNAMICS WITH SHORT-RANGE INTERACTIONS 5795

itself as ``thinning"" of crowd density inside supp \rho (t, \cdot ) and eventually creating vacuous
subregions in which the flow does not exert any alignment on its neighborhood. In
this case, the dynamics (1.1) is reduced to inviscid Burgers-type blowup [54], thereby
demonstrating the necessity of the no-vacuum assumption. This brings us to our
first main result, asserting that smooth nonvacuous solutions of alignment dynamics
associated with a general class of short-range singular kernels, (1.7), must flock.

Theorem 1.1 (smooth solutions must flock---singular symmetric kernels). Let
(\rho (t, \cdot ),u(t, \cdot )) be a global strong solution of the alignment dynamics (1.1) with short-
range symmetric kernel (1.7), over the torus \BbbT n. Assume that

(1.8) \eta (t) :=

\int t

\rho 2 - (s) ds
t\rightarrow \infty  - \rightarrow \infty , \rho  - (t) := min

\bfx 
\rho (t,x).

Then there is convergence towards flocking (with the average velocity u\infty = \bfP 0

M0
)

(1.9)

\int 
\BbbT n

| u(t,x) - u\infty | 2\rho (t,x) dx \leqslant 
1

2M0
e - \eta (t).

Note that any positive lower bound on the density is impossible in the open space
if finite mass is assumed. So, periodic conditions are more natural for the setting.
Compactness is also important for the proof, which is presented in section 3 below.
Theorem 1.1 provides a general framework for the flocking of alignment dynamics
driven by short-range singular communication kernels, under the assumption that the
global solution is nonvacuous. Here, the precise decay rate of the density min \rho (t, \cdot ) is
at the heart of matter: according to Theorem 1.1, unconditional flocking is achieved
under the lower bound

(1.10) \rho (t, \cdot ) \gtrsim 1\surd 
1 + t

.

The difficulty is that verification of such a priori lower bound seems out of reach. To
address this difficulty, we now introduce a new topological short-range communication
protocol which tames the required decay rate of the density by adapting itself to
sub-regions with thinner densities. Moreover, the new protocol is more realistic in
various behavioral experiments than the purely metric one, as we will discuss in the
next section.

1.2. A new paradigm for collective dynamics: Topological kernels. We
introduce a new communication protocol based on the principle that information
between agents spreads faster in regions of lower density. To realize this principle we
consider a communication kernel of the form

(1.11a) \phi (x,y) = \varphi (| x - y| )\times 1

dn\rho (x,y)
,

which depends on two main features.
(i) Metric distances. \varphi (r) reflects the dependence on metric distance in \BbbR n (and,

respectively, in \BbbT n), r(x,y) = | x - y| . For the metric part of the communication, we
use the short-range singular kernel

(1.11b) \varphi (r) =
h(r)

r\alpha 
, 1r<R0 \lesssim h(r) \lesssim 1r<2R0 , 0 < \alpha < 2.
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5796 ROMAN SHVYDKOY AND EITAN TADMOR

The smooth cut-off h(r) guarantees that communication is localized in balls of radius
\leqslant 2R0.

(ii) Topological distances. For any two parts of the crowd at two different locations
x,y \in supp \rho (t, \cdot ), we fix an intermediate region of communication \Omega (x,y) \subset \BbbR n

(or \subset \BbbT n). In the one-dimensional case, it is taken simply as the closed interval
\Omega (x, y) = [x, y]; in the multidimensional case, we choose a conical region outlined in
section 2.1. Then, d\rho (x,y) reflects the dependence on the ``mass"" as a topological
measure of a distance between the crowd at x and y; specifically,

(1.11c) d\rho (x,y) :=

\Biggl[ \int 
\Omega (\bfx ,\bfy )

\rho (t, z) dz

\Biggr] 1
n

with \Omega (x,y) given in (2.3).

Remark 1.2 (Why topological distances?). To motivate the so-called topological
distances (1.11c) we refer to the underlying discrete setup (1.2). The discrete configu-
ration ofN agents is captured by the empirical distribution \mu t(x,v) =

1
N

\sum 
k \delta \bfx k(t)(x)\otimes 

\delta \bfv k(t)(v). Then \mu t(\Omega (xi,xj)) amounts to counting the (discrete) crowd in the region
of communication \Omega (xi,xj), and we set the discrete distance to be

dN (xi,xj) :=
\bigl( 
\mu t(\Omega (xi,xj))

\bigr) 1
n =

\biggl( 
\#\{ xk | xk \in \Omega (xi,xj)\} 

N

\biggr) 1
n

.

The dependence of the communication kernel (1.11a) on d - n
N (xi, \cdot ) indicates that the

agent at xi places a strong preference of communication with its nearest agents,
\{ xj | dN (xi,xj) \sim N - 1

n \} , over the increased interference in communication with
agents farther away, \{ xj | dN (xi,xj) \lesssim 1\} . The net effect of probing low density
neighborhoods using such singular kernels is communication dictated by the number
of nearest agents rather than geometric proximity [29, 6, 7]. Letting N \rightarrow \infty recov-

ers the topological distance (1.11c) in the continuum setup, dN (x,y)
N\rightarrow \infty  - \rightarrow d\rho (x,y).

Thus, the corresponding alignment dynamics (1.1), (1.11) is a continuum realization
of the same paradigm---namely, enhancing communication in regions of low density
by invoking the ``density of closest neighbors"" as the proper continuum substitute
for the ``number of closest neighbors."" Accordingly, we refer to d\rho (xi,xj) as topolog-
ical (quasi-)distance. This is consistent with the established terminology in exper-
imental literature, which refers to such topological communication in flocking birds
[16, 2, 15, 14] and in human interaction in pedestrian dynamics [46].

Noting that d\rho (x,y) \gtrsim c(\rho )| x  - y| , it follows that \phi (x,y) is singular of order
n+\alpha , \phi (x,y) \lesssim 1| \bfx  - \bfy | \leqslant 2R0

| x - y|  - (n+\alpha ). Thus, the topological kernel (1.11) belongs
to the general class of short-range kernels (1.7). It reflects short-range communication
(of diameter \leqslant 2R0), maintaining finite amplitude \{ y | \phi (x,y) \gtrsim 1\} within active
topological neighborhoods

N(x) = \{ y \in B
2R0

(x) | d\rho (x,y) < c0\} ,

where c0 is an empirical constant indicating perception ability of the agents. The
kernel is nonconvolutive, and though \phi is symmetric, \phi (x,y) = \phi (y,x), the full
kernel that appears in the alignment term, K(x,y, t) := \phi (x,y)\rho (y), is not. The
proper notion of the nonsymmetric (strongly) singular alignment action on the right-
hand side of (1.1), C\phi (\rho , f) =

\int 
\phi (x,y)(f(y)  - f(x))\rho (y) dy, is discussed in section

2.2. This brings us to our second main result.
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EMERGENT DYNAMICS WITH SHORT-RANGE INTERACTIONS 5797

Theorem 1.3 (flocking of short-range topological kernels). Let (\rho ,u) be a global
smooth solution of the topological model (1.1), (1.11) on \BbbT n. Assume that the density
\rho (t, \cdot ) satisfies

(1.12) \rho (t,x) \geqslant 
c

1 + t
.

Then the solution aligns with u\infty with at least a root-logarithmic rate

(1.13) | u(t) - u\infty | \infty \lesssim 
c\surd 
ln t

.

The proof of Theorem 1.3, given in section 3.2 below, traces the propagation
of information between the extreme values of (the components of) u(t, \cdot ), which are
most susceptible to breakup since they can no longer rely on distant communication.
Instead, we introduce a new method of sliding averages, in which we measure how far
u(t,x) deviates from its average over the local balls B(x, r), r \leqslant R0, using a density-
weighted Campanato class. For some algebraic sequence of times tn \rightarrow \infty , these
deviations are proved to be small. At the same time, we show that, overwhelmingly,
u(t,x) stays close to its extreme values near the critical points where these values
are attained. To achieve this, we estimate the conditional probability of an unlikely
event of u being far from its extremes, in terms of the mass-measure dmt = \rho dx: it
is here that the topological-based alignment in (1.11a) plays a key role. We end up
with a (finite) overlapping chain of nonvacuous balls to connect any two points, and
by chain estimates, the fluctuations of u(t, \cdot ) are shown to decay uniformly in time.
This explains the emergence of global alignment from short-range interactions, which,
to the best of our knowledge, is the first result of its kind.

In closing this section, a couple of remarks are in order.

Remark 1.4 (a comparison with Motsch--Tadmor scaling). It is instructive to com-
pare the topological kernel (1.11), which we rewrite as

\phi (x,y) = \varphi (| x - y| )\times 1

mt(\Omega (x,y))
, mt(\Omega ) :=

\int 
\Omega 

\rho (t, z) dz,

with the Motsch--Tadmor scaling [38] with local \varphi (r) = 1r<R0
,

\phi (x,y) = \varphi (| x - y| )\times 1

mt(BR0
(x))

.

In the former, the pairwise interaction between two ``agents"" depends on the density
in an intermediate region of communication; in the latter, the communication of each
``agent"" depends on how thin the crowd is in its own metric neighborhood.

1.3. Global regularity: Drift-diffusion beyond symmetric kernels. As in
the case of long-range communication, Theorem 1.3 shifts the ``burden"" of proving
flocking with short-range topological kernels to the question of existence: do (1.1),
(1.11) admit global smooth solutions with lower-bounded density \rho (t, \cdot ) \gtrsim (1 + t) - 1?
In section 4, which is at the heart of matter and occupies the bulk of this paper, we
provide an affirmative answer for the one-dimensional model over \BbbT , thus providing a
first example of unconditional flocking. The question of nonvacuous global regularity
in dimension n > 1 remains open.

To elaborate further on the required regularity of (\rho , u), we note that both density
and momentum equations in (1.1) fall under a general class of parabolic drift-diffusion
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5798 ROMAN SHVYDKOY AND EITAN TADMOR

equations,

ut + b \cdot \nabla \bfx u =

\int 
K(x,y, t)(u(y) - u(x)) dy + f,

with (a priori) rough coefficients, b, and with a proper singular local kernels

1| \bfx  - \bfy | <R0

| x - y| 1+\alpha 
\lesssim K(x,y, t) \lesssim 

1| \bfx  - \bfy | <2R0

| x - y| 1+\alpha 
.

Regularity theory for equations of this type had a rapid development in recent years
due to breakthroughs in understanding of the nonlocal structure of the fractional
Laplacian; see Caffarelli et al. [9, 10], Silverstre et al. [52, 47], Mikulevicius and Pra-
garauskas [37], and local jump processes in Chen et al. [17] and the references therein.
Any of these regularity results requires, however, the symmetry of the kernel K(\cdot , \cdot , t),
which we lack in the present framework; thus, the velocity u in our topological model
(1.1) is governed by drift-diffusion associated with kernel K(x,y) = \phi (x,y)\rho (y);
while \phi (\cdot , \cdot ) is symmetric, K is not. Similarly, the same dynamics expressed in terms
of the momentum, m := \rho u, or the density (consult (4.10) and, respectively, (4.9))
encounters the nonsymmetric kernel K(x,y) = \phi (x,y)\rho (x).

Lack of symmetry in the K-kernels associated with the topological communica-
tion (1.11) poses a fundamental difficulty which prevents us from using the known
results about the regularizing effect in such transport-diffusion. Instead, we adapt
the De Giorgi method to settle the H\"older regularity of \rho (t, \cdot ) in the critical case
\alpha = 1 (section 4.4.2) and employ fractional Schauder estimates to address the \alpha > 1
case (section 4.4.1). Together with the propagation of higher order regularity proved
in section 4.3, we arrive at our third main regularity result stated below.

Theorem 1.5 (global regularity of 1D topological model). Consider the one-
dimensional system (1.1) on \BbbT with short-range topological kernel (1.11) and singu-
larity of order 1 \leqslant \alpha < 2. Any nonvacuous initial data (\rho 0, u0) \in Hs+\alpha \times Hs+1,
s \geqslant 3, admits a unique global in time solution, (\rho , u), in the class

\rho \in Cw(\BbbR +;Hs+\alpha ) \cap L2
loc(\BbbR +;Hs+1+\alpha 

2 ),

u \in Cw(\BbbR +;Hs+1) \cap L2
loc(\BbbR +;Hs+1+\alpha 

2 ),

which flocks | u(t, \cdot ) - u\infty | \infty \rightarrow 0.

Here, Cw designates the space of weakly continuous function. Let us note that the
density-enstrophy is expected to persist in a more natural, stronger regularity space

L2
tH

s+\alpha +\alpha 
2

x with \alpha > 1, yet proving this would involve rather technical fractional
energy estimates directly in Hs+\alpha , which we will postpone to future work.

Remark 1.6. What distinguishes the 1D setup is a conservation law, et+(ue)x =
0, of the first-order quantity e = ux +

\int 
\phi (x, y)(\rho (y)  - \rho (x)) dx; while this is known

for the metric kernels \phi = \varphi (| x  - y| ) [13, 49, 23], it is remarkable that the same
conservation law still survives for the anisotropic topological kernels \varphi (| x - y| )d\rho (x, y).
In section 4.1 we show that it enforces the parabolic character of the 1D mass equation
\rho t + (u\rho )x = 0, and in section 4.2 we show that it implies the lower-bound \rho (t, \cdot ) \gtrsim 
(1 + t) - 1 sought in (1.12).

1.4. Notation. The following notation is used throughout the text: | f | p stands
for the classical Lp-norm, 1 \leqslant p \leqslant \infty , \| f\| X stands for all other norms such as Hs,
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EMERGENT DYNAMICS WITH SHORT-RANGE INTERACTIONS 5799

etc., and [f ]\gamma , 0 < \gamma < 1, stands for the H\"older seminorm. The use of the following
brackets is adopted:

\langle f, g\rangle =
\int 
\BbbT n

f(x)g(x) dx, \langle f, g\rangle \rho =

\int 
\BbbT n

f(x)g(x)\rho (x) dx.

We denote \delta \bfz f(x) = f(x+ z) - f(x). For Sobolev spaces of fractional order, Hs(\BbbT n),
0 < s < 1, we always adopt the Gagliardo definition, which states

(1.14) \| f\| 2Hs =

\int 
\BbbT n

| \delta \bfz f(x)| 2\phi s(z) dz,

where

\phi s(z) =
\sum 
\bfk \in \BbbZ n

1

| z+ 2\pi k| n+2s
.

Considering f periodically extended to \BbbR n the above is the same as

\| f\| 2Hs =

\int 
\BbbR n

| \delta \bfz f(x)| 2
dz

| z| n+2s
.

We sometimes may use the latter for the benefit of a more explicitly defined kernel.

2. The new protocol: Short-range topological diffusion. In what follows
we restrict ourselves to the periodic domain \BbbT n. This choice is motivated by the fact
that the density in (1.1) quantifies parabolicity of the equation. With finite mass
M < \infty such parabolicity cannot be controlled uniformly on the open space. In this
section we elaborate on the basic ingredients which are involved in the short-range
singular topological alignment model (1.1), (1.11),

(2.1a)

\left\{   
\rho t +\nabla \cdot (\rho u) = 0,

ut + u \cdot \nabla \bfx u =

\int 
\BbbT n

\phi (x,y)(u(y) - u(x))\rho (y) dy,

where \phi is the topological kernel given by

(2.1b) \phi (x,y) =
h(| x - y| )
| x - y| \alpha 

\times 1

dn\rho (x,y)
, 1r<R0 \lesssim h(r) \lesssim 1r<2R0 , 0 < \alpha < 2.

Here, the first component of the kernel is quantified in terms of metric distance | x - y| ,
and the second involves the topological ``distance"" d\rho (x,y) between x and y, defined
by the mass located in the intermediate region of communication \Omega (x,y)

d\rho (x,y) =

\Biggl[ \int 
\Omega (\bfx ,\bfy )

\rho (t, z) dz

\Biggr] 1
n

.

The region of communication enclosed between x and y is outlined in section 2.1
below. Observe that in the absence of pressure each component u of u satisfies
the maximum principle, minu0 \leqslant u(t, \cdot ) \leqslant maxu0, and that for all global regular
solutions, u \in L1

locW
1,\infty , the density remains nonvacuous, \rho 0(x) > 0 \leadsto \rho (t,x) >

0 for all t \geqslant 0; hence we may assume that the density \rho is a nonvacuous kinematic
quantity satisfying

(2.2) 0 < c(t) \leqslant \rho (t,x) \leqslant C(t) <\infty , x \in \BbbT n.
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b b
yx

Ω(x,y)

Fig. 1. Communication domains between agents.

Note that although the distance function d\rho is not a proper metric (except for the one-
dimensional case where it accumulates the mass along the interval [x, y]), it defines
an equivalent topology on \BbbT n such that d\rho (x,y) \geqslant c| x - y| , and all the distances are
bounded by the total mass M . Moreover, since \Omega (x,y) = \Omega (y,x), the topological
distance is symmetric: d\rho (x,y) = d\rho (y,x).

2.1. Region of communication. The topological distance d\rho (x,y) requires us
to specify a domain of communication, \Omega (x,y), which is probed by agents located at
x and y. In the one-dimensional case, it is simply the closed interval, \Omega (x, y) = [x, y].
In the multidimensional case, it is reasonably argued that the ``intermediate environ-
ment"" between agents could be an n-dimensional region inside the ball enclosed by x

and y---namely B(\bfx +\bfy 
2 , r) with radius r := | \bfx  - \bfy | 

2 . For example, one can simply set
\Omega (x,y) to be that ball. As we shall see below, however, the fine structure of the local
regions of communication, \Omega (xi,xj), is important in order to retain unconditional
flocking. To this end, we set a more restrictive conical region \Omega (x,y); see Figure 1.
First, we consider two basic locations x = ( - 1, 0, . . . , 0) and y = (1, 0, . . . , 0) and set
the region of revolution generated by a parabolic arch connecting x and y:

\Omega 0 := \{ z = (a, z - )
\bigm| \bigm| | z - | < 1 - a2, - 1 \leqslant a \leqslant 1\} .

For an arbitrary pair of points x,y \in \BbbR n, let \Omega (x,y) denote the region scaled and
translated from \Omega 0:

(2.3) \Omega (x,y) := \{ z
\bigm| \bigm| | z - z - | < 1 - r2a2\} , r =

| x - y| 
2

,

where z - := z(a) is the projection of z on the diameter \{ z - (a) = \bfx +\bfy 
2 + a

2 (y - x),  - 1 \leqslant 
a \leqslant 1\} connecting x and y.

Observe that at the tips, \Omega (x,y) has the opening of \pi 
2 . For subsequent analysis,

it can be replaced by any angle < \pi , calibrated according to a particular application.2

It is crucial, however, that the region of communication is not locally smooth near
the tips x,y (see Claim 3.1 below), which excludes the ball B(\bfx +\bfy 

2 , r) with conical
opening of 90\circ .

2.2. Topological kernels and the operators they define. A distinctive fea-
ture of the alignment term on the right-hand side of (2.1a) is that it admits a (formal)

2Thus, for example, (2.3) can be enlarged to \Omega (\bfx ,\bfy ) := \{ \bfz 
\bigm| \bigm| | \bfz  - \bfz  - | \gamma < 1  - r2a2\} for any

0 < \gamma < 2.
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commutator structure [49]\int 
\BbbT n

\phi (x,y)(u(y) - u(x))\rho (y) dy = L\phi (\rho u) - L\phi (\rho )u := C\phi (u, \rho ),

where L\phi is the integral operator given formally by

(2.4) L\phi (f) := p.v.

\int 
\BbbT n

\phi (x,y)(f(y) - f(x)) dy.

Strong solutions to the system (1.1) satisfy energy equality

(2.5a)
d

dt

\int 
\BbbT n

\rho | u| 2 dx =  - 
\int 
\BbbT n

\phi (x,y)| u(x) - u(y)| 2\rho (x)\rho (y) dx dy,

which will be a key component in establishing alignment. We note in passing that in
view of the symmetry of the kernel \phi , we have conservation of mass and momentum:

M(t) =

\int 
\BbbT n

\rho (t,x) dx \equiv M0, P(t) =

\int 
\BbbT n

\rho u(t,x) dx \equiv P0.

Hence, the rate of decay of the energy of the left-hand side of (2.5a) is the same rate
of decay of the fluctuations

(2.5b)
d

dt

\int 
\BbbT 2n

| u(t,x) - u(t,y)| 2\rho (t,x)\rho (t,y) dx dy = 2M0
d

dt

\int 
\BbbT n

\rho | u| 2 dx.

Since we have the Galilean invariance u \rightarrow u(x+ tU, t) - U and \rho \rightarrow \rho (x+ tU, t), we
may assume that P(t) = P0 = 0.

We note that care has to be taken to properly define the singular integral operators
L\phi f(x) and the corresponding commutator

(2.6) C\phi (f, g) =

\int 
\BbbT n

\phi (x,y)(f(y) - f(x))g(y) dy

for strongly singular kernels \alpha \geqslant 1. Our immediate goal below is therefore to de-
velop formal definitions and initial facts about the operator L\phi in multidimensional
settings (more details specific to the 1D situation will follow in section 2.3). Due to
the nonconvolutive and anisotropic nature of the kernel, most of the standard facts
do not apply and will need to be readdressed. Our plan is to define L\phi f as a distri-
bution first. Then we state a formal justification of pointwise evaluations of L\phi f(x)
and the commutator C\phi (f, g), so as to justify the fundamental bookkeeping of ener-
gy/enstrophy fluctuations in (2.5). Technicalities of the proofs will be collected in the
appendices.

Definition 2.1 (the topologically based fractional diffusion). With the kernel
given by (2.1b) we define an operator L\phi : H\alpha /2 \rightarrow H - \alpha /2 by the following action:
for any f \in H\alpha /2 and g \in H\alpha /2

(2.7) \langle L\phi f, g\rangle =  - 1

2

\int 
\BbbT 2n

\phi (x,y)(f(x) - f(y))(g(x) - g(y)) dy dx.

Note that formally such action could be obtained from (2.4), if (2.4) made sense
pointwise, by the usual symmetrization. Clearly, from the Gagliardo definition of
H\alpha /2, (1.14), we have

| \langle L\phi f, g\rangle | \lesssim \| f\| H\alpha /2\| g\| H\alpha /2 .
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5802 ROMAN SHVYDKOY AND EITAN TADMOR

Due to the symmetry of the kernel, the operator L\phi is clearly self-adjoint, and its

range is in H
 - \alpha /2
0 (here subscript 0 means mean-free distributions). By the standard

operator theory this implies the following statement.

Lemma 2.2. The restricted operator L\phi : H
\alpha /2
0 \rightarrow H

 - \alpha /2
0 is invertible.

Proof. Clearly, c0\| f\| 2
H

\alpha /2
0

\leqslant  - \langle L\phi f, f\rangle \leqslant C0\| f\| 2
H

\alpha /2
0

. Hence, \| L\phi f\| H - \alpha /2 \geqslant 

c\| f\| H\alpha /2 , which shows that the operator has closed range and is injective. If the

range is not all of H
 - \alpha /2
0 , then there is a g \in H

\alpha /2
0 for which \langle L\phi f, g\rangle = 0 for all

f \in H\alpha /2. Taking f = g, we arrive at a contradiction. Thus, L\phi is invertible.

In what follows we will need to be able to evaluate the action of the operator
pointwise. In the range 0 < \alpha < 1 such evaluation presents no problem as long as
f \in C1. The rigorous argument goes by ``unwinding"" the symmetric defining formula
(2.7). To demonstrate it, let us denote by L\phi f(x) the integral on the right-hand
side of (2.4). Clearly, L\phi f \in C(\BbbT n). Let us fix a point x0 \in \BbbT n. Let g be the
standard nonnegative Friedrichs mollifier supported on the ball of radius 1. Denote
g\varepsilon =

1
\varepsilon n g((x - x0)/\varepsilon ). It suffices to show that

\langle L\phi f, g\varepsilon \rangle \rightarrow L\phi f(x0).

Since, for 0 < \alpha < 1, L\phi f(x) is a continuous function, we can break up the integral
without ambiguity:

\langle L\phi f, g\varepsilon \rangle =  - 1

2

\int 
\BbbT 2n

(f(x) - f(y))(g\varepsilon (x) - g\varepsilon (y))\phi (x,y) dy dx

=

\int 
\BbbT 2n

(f(y) - f(x))g\varepsilon (x)\phi (x,y) dy dx = \langle L\phi f, g\varepsilon \rangle \rightarrow L\phi f(x0).

The higher case 1 \leqslant \alpha < 2 is more subtle. Let us show that when \rho and f
are smooth, the element L\phi f \in H - \alpha /2 gains regularity. Formally, this first step is
necessary to even discuss pointwise values L\phi f(x). So, let us make the following
observation:

(2.8) \nabla \bfx d\rho (x+ z,x) =
1

dn - 1
\rho (x+ z,x)

\int 
\Omega (\bfx +\bfz ,\bfx )

\nabla \rho (y) dy =

\int 
\partial \Omega (\bfx +\bfz ,\bfx )

\vec{}\nu \rho (y) dy.

Clearly, if | \nabla \rho | \infty < \infty , then | \nabla \bfx d\rho (x + z,x)| \leqslant C| \nabla \rho | \infty | z| with C depending on a
standing hypothesis on the density (2.2). Next, we rewrite the defining formula (2.7)
in terms of the difference operator \delta \bfz f(x) := f(x+ z) - f(x),

\langle L\phi f, g\rangle =  - 1

2

\int 
\BbbT 2n

\delta \bfz f(x)\delta \bfz g(x)\phi (x,x+ z) dx dz

=  - 1

2

\int 1

0

\int 
\BbbT 2n

\delta \bfz f(x)\nabla g(x+ \theta z) \cdot z \phi (x,x+ z) dx dzd\theta .

Integrating by parts and recalling (1.11), \phi (x+z,x) = h(\bfz )
| \bfz | \alpha \times d - 1

\rho (x+z,x), we obtain

\langle L\phi f, g\rangle =
1

2

\int 1

0

\int 
\BbbT 2n

\delta \bfz \nabla f(x) \cdot zg(x+ \theta z)\phi (x,x+ z) dx dz d\theta 

+
1

2

\int 1

0

\int 
\BbbT 2n

\delta \bfz f(x)g(x+ \theta z)\delta \bfz \rho (x)
\nabla d\rho (x+ z,x) \cdot z
| z| \alpha dn+1

\rho (x+ z,x)
h(z) dx dzd\theta .
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Note that the singularity of the kernels appearing inside both integrals is of order
n+ \alpha  - 1 now. With additional use of smoothness of other quantities we obtain

| \langle L\phi f, g\rangle | \lesssim (\| f\| C2 + \| f\| C1\| \rho \| C1)| g| \infty .

This is of course not an optimal bound, but it shows that the regularity of L\phi f
improves. One can continue in a similar fashion. Assuming g = \partial kxh, for some
h \in L\infty , one obtains

| \langle L\phi f, \partial 
k
xh\rangle | \lesssim C(\| f\| Ck+2 , \| \rho \| Ck+1)| h| \infty .

Thus, L\phi f \in (C - k)\ast \subset Ck - \varepsilon for any \varepsilon > 0.
Lemmas A.1 and A.2 stated in Appendix A make a formal justification for rep-

resentation formulas (2.4) and (2.6), which are to be understood in the principal
value sense. They come with estimates that will be crucial in the proof of the global
regularity in 1D; see section 4.

In what follows the density function \rho of course depends on time, and so does the
kernel. However, we will suppress the time variable for notational brevity.

2.3. Leibnitz rules and coercivity. In this section we develop basic product
rules and coercivity estimates for the operator L\phi . We restrict ourselves to the one-
dimensional case both for notational simplicity and for its use in the proof of regularity
asserted in Theorem 1.5.

We start with basic product formulas for the derivative of L\phi f provided f and \rho 
are smooth.

First, let us observe that (2.8) in the 1D case takes a simple form:

(2.9) \partial xd\rho (x+ z, x) = \delta z\rho (x) sgn(z).

Formally the Leibnitz rule reads

(2.10) (L\phi f)
\prime = L\phi (f

\prime ) +L\phi \prime f,

where

L\phi \prime (f) =  - 
\int 
\BbbT 

h(z)

| z| \alpha d2\rho (x, x+ z)
\delta z\rho (x) sgn(z)\delta zf(x) dz.

The symmetric kernel \phi \prime is of the same order 1 + \alpha . So, we can make sense of the
integral in the same way as we did for L\phi . Rigorous justification of (2.10) follows by
proving (2.10) in its weak formulation. So, for any g \in C\infty , we have

\langle (L\phi f)
\prime , g\rangle =  - \langle L\phi f, g

\prime \rangle 

=
1

2

\int 
\delta zf(x)\delta zg

\prime (x)\phi (d\rho (x+ z, x), z) dx dz

=  - 1

2

\int 
\delta zf

\prime (x)\delta zg(x)\phi (d\rho (x+ z, x), z) dxdz

 - 1

2

\int 
\delta zf(x)\delta zg(x)\partial x\phi (d\rho (x+ z, x), z) dxdz

= \langle L\phi (f
\prime ), g\rangle + \langle L\phi \prime f, g\rangle .
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Continuing in the same fashion, we obtain

(2.11) (L\phi f)
(n) =

n\sum 
k=0

n!

k!(n - k)!
L\phi (k)f (n - k).

We can now discuss the coercivity property of the operator L\phi . In tune with the
fact that L\phi puts \alpha -derivatives on f , it is natural to expect that L\phi f \in Hs if and
only if f \in Hs+\alpha . For the topological kernels, however, this is a delicate result, the
details of which are presented in the following lemma.

Lemma 2.3. For any s \geqslant 3 and 1 \leqslant \alpha < 2 one has the following bounds:

\| L\phi f\| 2Hs \lesssim \| f\| 2Hs+\alpha + \| f\| N
Hs+\alpha 

2
+ \| \rho \| N

Hs+\alpha 
2
+ 1,

\| L\phi f\| 2Hs \gtrsim \| f\| 2Hs+\alpha  - \| f\| N
Hs+\alpha 

2
 - \| \rho \| N

Hs+\alpha 
2
 - 1,

(2.12)

where N = N(n, \alpha , s), and \lesssim denotes up to a constant depending on (min \rho ) - 1 and
max \rho .

Proof. According to Lemma B.3 the commutator satisfies

| (L\phi f)
(s)  - L\phi (f

(s))| 22 \lesssim \| f\| N
Hs+\alpha 

2
+ \| \rho \| N

Hs+\alpha 
2
+ 1.

To deduce that we simply observe that all the dependencies on | \rho \prime | \infty , | f \prime | \infty , . . . , | f (k - 1)| \infty ,
| \rho (k - 1)| \infty translate into Hs+\alpha 

2 -norms by the Sobolev embedding. So, it remains to
estimate the top term | L\phi (f

(s))| 22.
Let us denote for simplicity f (s) = g. We ``freeze"" the density in the topological

distance as follows:

L\phi g(x) =
1

\rho (x)

\int 
\BbbT 

h(| z| )
| z| 1+\alpha 

\delta zg(x) dz +

\int 
\BbbT 

h(| z| )
| z| 1+\alpha 

\Biggl( 
1

1
| z| 

\int 
[0,z]

\rho (x+ \xi ) d\xi 
 - 1

\rho (x)

\Biggr) 
\delta zg(x) dz

= J1 + J2.

The first integral represents the truncated fractional Laplacian. We clearly have

| J1| 22 \sim \| g\| 2H\alpha .

As for J2 we estimate\bigm| \bigm| \bigm| \bigm| \bigm| 1
1
| z| 

\int 
[0,z]

\rho (x+ \xi ) d\xi 
 - 1

\rho (x)

\bigm| \bigm| \bigm| \bigm| \bigm| \lesssim | z| | \nabla \rho | \infty ,

and with that

| J2(x)| \lesssim | \nabla \rho | \infty 
\int 
\BbbT 

h(| z| )
| z| \alpha 

| \delta zg(x)| dz = | \nabla \rho | \infty 
\int 
\BbbT 

h(| z| )
| z| \alpha +1

2

| \delta zg(x)| 
dz

| z| \alpha  - 1
2

\lesssim | \nabla \rho | \infty \| g\| H\alpha /2 \lesssim \| f\| N
Hs+\alpha 

2
+ \| \rho \| N

Hs+\alpha 
2
.

Putting together the obtained estimates proves the lemma.

3. Smooth solutions must flock. The goal of this section will be to prove
that any global, nonvacuous smooth solution to the topological model (1.1) aligns
to its average velocity vector u\infty , which can be determined from the conservation of
momentum and mass: u\infty = P0/M0.
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3.1. Flocking for local symmetric kernels. Let us first cast the question of
flocking in the general setting (1.7), which includes both metric (1.3) and topological
kernels (1.11a), as well as other singular \phi 's localized along the diagonal. In other
words, at this point we do not specify any fine structure of the kernel near the singu-
larity. We recast the fundamental energy balance relation (2.5), valid for any singular
symmetric kernel, via our definition (2.7):

d

dt

\int 
\BbbT 2n

| u(t,x) - u(t,y)| 2\rho (t,x)\rho (t,y) dx dy =  - 2M0

\int 
\BbbT 2n

\langle C\phi (u, \rho ),u\rangle \rho dy

=  - 2M0

\int 
\BbbT 2n

\phi (x,y)| u(t,x) - u(t,y)| 2\rho (t,x)\rho (t,y) dx dy.

(3.1)

The main technical aspect of deriving a proper Gr\"onwall differential inequality from
(3.1) consists of obtaining lower-bounds of the enstrophy on the right-hand side of
(3.1) for short-range \phi 's.

It is clear that a necessary condition for flocking | u(t, \cdot )  - u\infty | \rightarrow 0 requires the
density to be bounded away from vacuum, or else the flow may break apart into two
or more separate ``islands"" traveling in their own velocity which is disconnected from
the influence of others. Indeed, when \rho (\cdot , t) vanishes on a compact set, the momentum
equation (1.1) is reduced to the pressureless Burgers system ut + u \cdot \nabla \bfx u = 0, which
in turn leads to a finite-time blowup; see [54]. Precisely how far from vacuum the
density must be in order to fulfill an alignment dynamics for general local kernels \phi 
is asserted in (1.8). This brings us to the proof of our first main result.

Proof of Theorem 1.1. We begin by setting up the general Hilbert structure for a
variational formulation of the problem. Let us denote by L2

\rho the space of L2(\BbbT n)-fields
u with scalar product given by

\langle u,v\rangle \rho =

\int 
\BbbT n

u(x) \cdot v(x)\rho (t,x) dx.

Note that the metric of the space L2
\rho changes in time. Next, we consider the family

of eigenvalue problems parametrized by time: we seek eigenpairs, \kappa (t) and u(t, \cdot ),

(3.2)

\int 
\BbbT n

\phi (x,y)(u(y) - u(x))\rho (t,y) dy = \kappa (t)u(x), u \in U\alpha 
\rho := L2

\rho \cap H\alpha /2.

Note that the left-hand side is precisely the action of the commutator C\phi (u, \rho ), which,
for any fixed smooth \rho and any symmetric kernel satisfying (1.7), maps H\alpha /2 into
H - \alpha /2. Moreover, the symmetric definition of L\phi (2.7) yields that  - C\phi (u, \rho ) is non-
negative,  - (C\phi (u, \rho ),u) \geqslant 0. Hence \kappa 1 = 0 is the minimal eigenevalue corresponding
to the constant solution u \equiv 1, and this allows us to seek the second minimal eigen-
value as a solution to the variational problem3

(3.3) \kappa 2(t) = inf
\bfu \in U\alpha 

\rho 

 - \langle C\phi (u - u, \rho ),u - u\rangle \rho 
| u - u| 2L2

\rho 

, u :=

\int 
u\rho \int 
\rho 

so that \langle u - u,1\rangle \rho = 0

3By symmetry \bfu = \bfu \infty := \bfP 0/M0, but we keep the separate notation of \bfu to signify orthogonality
to the 0-eigenspace spanned by \bfone .
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5806 ROMAN SHVYDKOY AND EITAN TADMOR

or, stated explicitly in terms of | u - u| 2L2
\rho 
= 1

2M0

\int 
\BbbT 2n | u(y) - u(x)| 2\rho (x)\rho (y) dx dy,

(3.4) \kappa 2(t) = 2M0 \times inf
\bfu \in U\alpha 

\rho 

\int 
\BbbT 2n

\phi (x,y)| u(y) - u(x)| 2\rho (t,y)\rho (t,x) dx dy\int 
\BbbT 2n

| u(x) - u(y)| 2\rho (t,x)\rho (t,y) dx dy

.

Since the numerator with \phi (x,y) \simeq | x - y|  - (n+\alpha )1r<R0
(| x - y| ) is equivalent for the

H\alpha /2-norm, the existence follows classically by compactness. This links the enstrophy
on the right-hand side of (3.1) to \kappa 2(t), in complete analogy to the discrete case in
which the coercivity of the discrete enstrophy is dictated by the Fiedler number;
consult [39, sec. 2.2].

We can now state an alignment estimate in terms of the shrinking L2
\rho -diameter

of the velocity, given by

(3.5) V2[u, \rho ](t) :=

\int 
\BbbT 2n

| u(t,x) - u(t,y)| 2\rho (t,x)\rho (t,y) dx dy.

By (3.1), (3.4) we have

(3.6)
d

dt
V2[u, \rho ](t) \leqslant  - \kappa 2(t)V2[u, \rho ](t).

The implication of (3.6) is of course the bound
(3.7)

2M0

\int 
\BbbT n

| u(t,x) - u\infty | 2\rho (t,x) dx = V2[u, \rho ](t) \leqslant V2[u0, \rho 0] exp

\biggl\{ 
 - 
\int t

0

\kappa 2(s) ds

\biggr\} 
.

Consequently, the solution aligns in the L2
\rho -distance sense if

\int \infty 
0
\kappa 2(s) ds = \infty . It is

here that we use the assumed lower-bound on the density, \rho (t, \cdot ) \gtrsim \rho  - (t), the assumed
singularity of our kernel \phi (x,y) \gtrsim | x - y|  - (n+\alpha )1| \bfx  - \bfy | <R0

, and by the uniform upper-
bound of the density, | u - u| L2

\rho 
\lesssim | u| L2 , in order to bound the spectral gap

(3.8) \kappa 2(t) \geqslant c\rho 2 - (t) inf
\bfu \in U\alpha 

\rho 

\int 
| \bfx  - \bfy | <R0

| u(x) - u(y)| 2

| x - y| n+\alpha 
dx dy

| u| 22
, c :=

2M0

C2
.

Technically, the infimum still depends on time since it is taken over the orthogonal
complement of the line spanned by \rho (t), denoted [\rho (t)], in the classical L2(\BbbT n). We
now have to show that this infimum still stays bounded away from zero. Geometrically
this is due to the fact that the space [\rho (t)]\bot does not come close to the span of
constants \BbbR n in the sense of Hausdorff distance. It is more straightforward to argue
by contradiction, however.

Suppose there is a sequence of times tk \in \BbbR + and uk \in L2
\rho (tk)

\cap H\alpha /2 such that

| uk| 2 = 1 yet the homogeneous local H\alpha /2-norm tends to zero:

(3.9)

\int 
| \bfx  - \bfy | <R0

| uk(x) - uk(y)| 2

| x - y| n+\alpha 
dx dy \rightarrow 0.

Note that the latter, in particular, implies compactness of the sequence \{ uk\} k in L2.
Hence, up to a subsequence, uk \rightarrow u\ast strongly in L2 and weakly in H\alpha /2. By the
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EMERGENT DYNAMICS WITH SHORT-RANGE INTERACTIONS 5807

weak lower-semicontinuity and (3.9), we conclude that u\ast \in \BbbR n is a constant field,
with | u\ast | = 1 due to | uk| 2 \rightarrow | u\ast | 2.

At the same time, since \rho (t) > 0 and
\int 
\rho (tk,x) dx = M0, there exists a weak\ast 

limit of a further subsequence \rho (tk) \rightarrow \mu , where \mu is a positive Radon measure on
\BbbT n with nontrivial total mass \mu (\BbbT n) = M0 (since M0 = \langle \rho (tk), 1\rangle \rightarrow \langle \mu , 1\rangle ). We now
reach a contradiction if we prove the limit

0 =

\int 
\BbbT n

uk(x)\rho (tk,x) dx \rightarrow 
\int 
\BbbT n

u\ast d\mu =M0u\ast .

To prove the claimed limit note that the assumed uniform upper-bound of the density
implies\int 

\BbbT n

uk(x)\rho (tk,x) dx - 
\int 
\BbbT n

u\ast d\mu (x)

=

\int 
\BbbT n

uk(x)\rho (tk,x) dx - M0u\ast =

\int 
\BbbT n

(uk(x) - u\ast )\rho (tk,x) dx,

and the latter is clearly bounded by C| uk  - u\ast | 2 \rightarrow 0. We conclude that\int 
\kappa 2(s) ds \geqslant c\eta (t) = c

\int t

\rho 2 - (s) ds\rightarrow \infty ,

and the result follows from (3.7).

3.2. Flocking with short-range topological kernels. We now turn our at-
tention to the topological communication kernel (1.11) and prove our main result,
which improves the general Theorem 1.1 to include a more natural condition on the
density.

Proof of Theorem 1.3. Let us fix a coordinate i and aim to prove (1.13) for ui.
We denote u = ui for notational simplicity. Using the Galilean invariance, we can
lift u if necessary and assume that u(t) > 0. Note that the extrema of u(t), denoted
u+(t) and u - (t), are monotonically decreasing and increasing, respectively.

We will make frequent use of the mass measure denoted

dmt = \rho (t, z) dz.

Step 1: Flattening near extremes. Let x+(t) be a point of maximum for
u(t, \cdot ) and x - (t) a point of minimum. Let us fix a time-dependent \delta (t) > 0 to be
specified later, and consider the sets

G+
\delta (t) = \{ u < u+(t)(1 - \delta (t))\} , G - 

\delta (t) = \{ u > u - (t)(1 + \delta (t))\} .

The effect of flattening is expressed in terms of conditional expectations of the above
sets in the balls B(x\pm (t), R0) with respect to the mass measure. Let us denote

\BbbE t[A| B] =
mt(A \cap B)

mt(B)
.

We show that

(3.10)

\int \infty 

0

\delta (t)\BbbE t[G
\pm 
\delta (t)| B(x\pm (t), R0)] dt <\infty .
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5808 ROMAN SHVYDKOY AND EITAN TADMOR

We focus on the ``+"" case, as the `` - "" case is entirely similar. To this end, let us com-
pute the equation pointwise at the critical point (t,x+(t)) utilizing the Rademacher
theorem: (\partial tu)(t,x+(t)) = \partial tu+(t) a.e.,

\partial tu+(t) =

\int 
\phi (x+(t),y)(u(y) - u+(t))\rho (y) dy.

At point (x+(t), t) we estimate on the alignment term with the use of the following
observation:

(3.11) c0
1r<R0

(| x - y| )
dn\rho (x,y)

\leqslant \phi (x,y)

for some c0 > 0. Thus, we have

 - \partial tu+(t) =

\int 
\phi (\bfx +,\bfy )(u+(t) - u(\bfy ))\rho (\bfy ) d\bfy 

\geqslant c0

\int 
B(\bfx +,R0)

1

dn
\rho (\bfx +,\bfy )

(u+(t) - u(\bfy ))\rho (\bfy ) d\bfy ,

\geqslant 
c0

mt(B(\bfx +(t), R0))

\int 
G+

\delta 
(t)\cap B(\bfx +(t),R0)

(u+(t) - u(\bfy ))\rho (\bfy ) d\bfy (since \Omega (\bfx +,\bfy ) \subset B(\bfx +, R0))

\geqslant 
c0\delta (t)u+(t)

mt(B(\bfx +(t), R0))

\int 
G+

\delta 
(t)\cap B(\bfx +(t),R0)

\rho (\bfy ) d\bfy 

= c0\delta (t)u+(t)\BbbE t[G
+
\delta (t)| B(\bfx +(t), R0)].

The result follows by integration:

c0

\int \infty 

0

\delta (t)\BbbE t[G
+
\delta (t)| B(x+(t), R0)] dt \leqslant ln

u+(0)

limt\rightarrow \infty u+(t)
\leqslant ln

u+(0)

u - (0)
.

Step 2: Campanato estimates. In this next step we obtain proper Campanato
estimates that measure deviation of u from its average values in terms of global
enstrophy.

We denote the averages with respect to mass measure by

u\bfx ,r =
1

mt(B(x, r))

\int 
B(\bfx ,r)

u(t, z) dmt(z).

Fix x\ast \in \BbbT n. By the H\"older inequality, we have the following estimate:\int 
| \bfx  - \bfx \ast | < r

10

| u(\bfx ) - u\bfx \ast ,r| 
2\rho (\bfx ) d\bfx \leqslant 

\int 
| \bfx  - \bfx \ast | < r

10
| \bfy  - \bfx \ast | <r

1

mt(B(\bfx \ast , r))
| u(\bfx ) - u(\bfy )| 2\rho (\bfx )\rho (\bfy ) d\bfy d\bfx .

At this point we recall that the communication domain \Omega (x,y) in (2.3) has corner
tips of opening \pi 

2 degrees. Hence, we can make the following geometric observation.

Claim 3.1. If | x - x\ast | < 1
10r and | y  - x\ast | < r, then \Omega (x,y) \subset B(x\ast , r).

In other words, if y is in a ball and x is close enough to the center of that ball,
then the domain \Omega (x,y) is entirely enclosed in the ball also; see Figure 2. This implies
that mt(B(x\ast , r)) \geqslant mt(\Omega (x,y)) = dn\rho (x,y). We thus can further estimate, with the
use of (3.11),\int 
| \bfx  - \bfx \ast | < r

10

| u(x) - u\bfx \ast ,r| 2\rho (x) dx \leqslant 
\int 
| \bfx  - \bfy | < 11

10 r

1

dn\rho (x,y)
| u(x) - u(y)| 2\rho (x)\rho (y) dy dx

\leqslant 
\int 
\BbbT 2

\phi (x,y)| u(x) - u(y)| 2\rho (x)\rho (y) dy dx.
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x∗

x

y
Ω(x,y)

B(x∗, r/10)

B(x∗, r)

b

b

b

Fig. 2. \Omega (\bfx ,\bfy ) is trapped in the outer ball if \bfx is close to the center.

The energy balance (3.1) (see also (2.5)) yields the space-time bound on the
(components of) enstrophy on the right-hand side\int \infty 

0

\int 
\BbbT 2n

\phi (x,y)| u(x) - u(y)| 2\rho (x)\rho (y) dx dy \leqslant 
1

2

\int 
\BbbT n

\rho 0| u0| 2 dx <\infty ;

hence we conclude with a time bound on the Campanato seminorm,

(3.12)

\int \infty 

0

[u]2\rho dt <\infty , [u]2\rho := sup
\bfx \ast \in \BbbT n,r<

R0
2

\int 
| \bfx  - \bfx \ast | < r

10

| u(x) - u\bfx \ast ,r| 2\rho (x) dx.

Combined with (3.10) we have obtained

I =

\int \infty 

0

\Bigl( 
\delta (t)\BbbE t[G

\pm 
\delta (t)| B(x\pm (t), R0)] + [u(t)]2\rho 

\Bigr) 
dt <\infty .

Clearly, for A = e2I we have\int TA

T

dt

t ln t
= 2I for all T > 0.

Hence, for any T > 1 we can find a t \in [T, TA] such that

[u(t)]2\rho <
1

t ln t
,

\BbbE t[G
+
\delta (t)| B(x+(t), R0)] + \BbbE t[G

 - 
\delta (t)| B(x - (t), R0)] <

1

\delta (t)t ln t
.

(3.13)

In view of the assumed lower bound on the density, this implies in particular that

(3.14) sup
\bfx \ast , r<

R0
2

\int 
| \bfx  - \bfx \ast | < r

10

| u(x) - u\bfx \ast ,r| 2 dx \leqslant 
1

ln t
.
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b b b bb b b

x− x1 xK x+

B0 B1 BK BK+1

n

Fig. 3.

Step 3: Sliding averages. Let us assume that t \in [T, TA] is a time fixed
above. We will now reconnect the two averages u\bfx +,r and u\bfx  - ,r sliding along the line
connecting x+ and x - and show that the variation of those averages is small.

Denote the direction vector n = \bfx + - \bfx  - 
| \bfx + - \bfx  - | and define a sequence of overlapping

balls, Bk = B(xk,
r
10 ), k = 0, . . . ,K, with centers given by xk = x - + 19r

100kn, starting

at x - and ending, with K = [ | \bfx + - \bfx  - | 
19r/100 ], at xK+1 = x+; see Figure 3.

The Chebyshev inequality, followed by (3.14) applied to the ball centered at x\ast =
x0, yields

| \{ x \in B0 \cap B1 : | u(x) - u\bfx 0,r| > \eta \} | \leqslant 1

\eta 2

\int 
B0

| u(x) - u\bfx 0,r| 2 dx \leqslant 
1

\eta 2 ln t
.

We now fix scale r := R0/4. Noticing that | Bk \cap Bk+1| = cRn
0 for all k \leqslant K and some

dimensional c > 0, we set \eta = 2\surd 
c0Rn

0 ln t
so that

| \{ x \in B0 \cap B1 : | u(x) - u\bfx 0,r| > \eta \} | \leqslant 1

4
| B0 \cap B1| .

Applying the same argument to the variation around the averaged value u\bfx 1,r, cen-
tered at x\ast = x1, we obtain

| \{ x \in B0 \cap B1 : | u(x) - u\bfx 1,r| > \eta \} | \leqslant 1

4
| B0 \cap B1| .

Consequently the complements of the two sets must have a point in common inB0\cap B1:

\{ x \in B0 \cap B1 : | u(x) - u\bfx 0,r| \leqslant \eta \} \cap \{ x \in B0 \cap B1 : | u(x) - u\bfx 1,r| \leqslant \eta \} \not = \emptyset ,

which implies that

| u\bfx 0,r  - u\bfx 1,r| \leqslant 2\eta .

Continuing in the same manner, we obtain the same bound for all consecutive aver-
ages:

| u\bfx k,r  - u\bfx k+1,r| \leqslant 2\eta .

Hence,

(3.15) | u\bfx  - ,r  - u\bfx +,r| \leqslant 2(K + 1)\eta \lesssim 
1\surd 
ln t

.
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Note that K \leqslant 400\pi /R0, so it is bounded by an absolute constant. Furthermore, in
view of (3.13), we can estimate

u\bfx +,r \geqslant 
1

mt(B(x+, r))

\int 
B(\bfx +,r)\setminus G+

\delta 

u+(t)(1 - \delta (t)) dmt

\geqslant u+(t)(1 - \delta (t))(1 - \BbbE t[G
+
\delta (t)| B(x+(t), R0)]) \geqslant u+(t)(1 - \delta (t))

\biggl( 
1 - 1

\delta (t)t ln t

\biggr) 
.

Hence,

u+(t) - u\bfx +,r(t) \lesssim \delta (t) +
1

\delta (t)t ln t
\lesssim 

1\surd 
t ln t

if we set \delta (t) = 1\surd 
t ln t

. A similar estimate holds for the bottom average. In conjunction

with (3.15) these imply

| u+(t) - u - (t)| \lesssim 
1\surd 
ln t

.

To conclude the proof we note that by the maximum principle

| u+(TA) - u - (T
A)| \lesssim 1\surd 

ln t
\sim 1\sqrt{} 

ln(TA)
.

Since T is arbitrary, this finishes the proof.

4. Global well-posedness in 1D. In this section we develop a more complete
theory of one-dimensional topological models and provide the proof of Theorem 1.5.
In 1D the system takes the form
(4.1)\left\{     

\rho t + (\rho u)x = 0,

ut + uux = C\phi (u, \rho ), \phi (x, y) =
h(| x - y| )
| x - y| \alpha 

\times 1

d\rho (x, y)
,

(t, x) \in \BbbR + \times \BbbT ,

where

d\rho (x, y) =

\bigm| \bigm| \bigm| \bigm| \int y

x

\rho (t, z) dz

\bigm| \bigm| \bigm| \bigm| .
The distinct feature of the one-dimensional models with convolution metric kernels
\phi (x - y) is an extra conservation law:

(4.2) et + (ue)x = 0, e := ux +L\phi \rho .

The derivation of the conservative ``e""-equation is straightforward with either smooth
or singular radial kernels [13, 49]. It plays a key role in the regularity and hence
unconditional flocking of the 1D alignment with metric-based communication [13, 49,
51]. Its role as a measure of disorder of the limiting flock was explored in [35]. A
priori, there is no reason for (4.2) to hold in our case: the derivation of such a law
stumbles upon the difficulty that the operator L\phi does not commute with derivatives.
Nevertheless, it is remarkable that the law (4.2) still survives for anisotropic topological
kernels. To make our analysis rigorous we need to develop calculus of the operator
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5812 ROMAN SHVYDKOY AND EITAN TADMOR

L\phi and collect several analytical facts before we can proceed. This will be done in
section 2.3.

Once we justify (4.2), we can proceed in section 4.1 to the regularity of the 1D
solution along the lines of [49, 50]. Since the topological kernels lack translation
invariance, we need to revisit the question of propagation of regularity in section 4.3
and H\"older regularization of the density in sections 4.4.1 and 4.4.2.

The proof will be split into several stages. First, before we enter into the tech-
nicalities of the argument, we develop necessary tools to work with the operator L\phi 

itself. This will be done in the next section. Second, we establish a priori estimates
on the density that are necessary to sustain uniform parabolicity and conclude the
alignment; see section 4.2. Third, we prove a propagation of regularity result, Propo-
sition 4.4, which states that if one can propagate some modulus of continuity of the
density, then one can propagate any higher order regularity for both u and \rho . Fourth,
we show how to gain a H\"older modulus of continuity from several sources. In the case
1 < \alpha < 2 we reduce the problem to a known Schauder estimate for fractional singular
operators. For the case \alpha = 1, we employ the De Giorgi method along the lines of
Caffarelli, Chan, and Vasseur [9] with significant upgrades related to the presence of
a drift, source, and asymmetry of the kernel involved. We also treat the system as
truly nonlinear (see also [24]) and highlight scaling properties of the system which
become very important; see (4.34)--(4.35).

Finally, the alignment claim follows directly from Theorem 1.3. Indeed, the lower-
bound on the density (1.12) requires the rate which will be established for any regular
solutions in Lemma 4.3 below.

First we note that the existence and uniqueness of local solutions of (4.1) can be
deduced from the estimates we perform below when treated as a priori. We state the
result here for our future reference.

Theorem 4.1. Let 1 \leqslant \alpha < 2 and s \geqslant 3. For any initial data u0 \in Hs+1(\BbbT ),
\rho 0 \in Hs+\alpha (\BbbT ), with no vacuum \rho 0(x) > 0, there exists a unique solution to the system
(4.1) on a time interval [0, T ) on which it will remain nonvacuous and belonging to
the class

u \in Cw([0, T ), H
s+1) \cap L2([0, T ), Hs+1+\alpha 

2 ),

\rho \in Cw([0, T ), H
s+\alpha ) \cap L2([0, T ), Hs+1+\alpha 

2 ).
(4.3)

Incidentally, local well-posedness in any dimension n can be established too; we
refer the reader to [45] for details.

4.1. An additional conservation law. The conservative ``e""-equation (4.2) is
at the heart of the matter for the 1D regularity theory, along the lines of [49, 50, 51, 23].
We derive it with the use of the product formula (2.10).

Lemma 4.2 (the conservation law of e). For any solution to the topological model
in class (4.3) the following conservation law holds:

et + (ue)x = 0, e = ux +L\phi \rho .

Proof. Differentiating the velocity equation and using the product rule (2.10), we
obtain

(4.4) u\prime t + u\prime u\prime + uu\prime \prime = L\phi ((u\rho )
\prime ) - u\prime L\phi (\rho ) - u(L\phi (\rho ))

\prime +L\phi \prime (u\rho ).
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The finite difference in the integral representation of the last term is given by

u(y)\rho (y) - u(x)\rho (x) =

\int y

x

(u\rho )\prime (\zeta )d\zeta =  - 
\int y

x

\rho t(\zeta )d\zeta =  - \partial td\rho (x, y) sgn(y  - x).

Recalling the formula for the distance d\rho (x, y) =
\bigm| \bigm| \int y

x
\rho (t, z) dz

\bigm| \bigm| , we obtain\int y

x

\rho t(\zeta )d\zeta = \partial td\rho (x, y) sgn(y  - x).

Thus,

L\phi \prime (u\rho ) =  - 
\int 
\partial td\rho (x, y) sgn(y  - x)\phi \prime (x, y) dy.

Noting the relationship

\partial td\rho (x, y) sgn(y  - x)\phi \prime (x, y) = \partial t\phi (x, y)(\rho (y) - \rho (x)),

we obtain L\phi \prime (u\rho ) =  - 
\int 
\partial t\phi (x, y)(\rho (y)  - \rho (x)) dy. Putting it together with the

L\phi ((u\rho )
\prime ) term, we obtain

L\phi ((u\rho )
\prime ) +L\phi \prime (u\rho ) =  - \partial tL\phi (\rho ).

Grouping together terms in (4.4), we arrive at

(u\prime +L\phi (\rho ))t + u\prime (u\prime +L\phi (\rho )) + u(u\prime +L\phi (\rho ))
\prime = 0,

which is precisely the law (4.2).

Paired with the continuity equation we find that the ratio q = e/\rho satisfies the
transport equation

qt + uqx = 0.

Starting from a sufficiently smooth initial condition with \rho 0 away from vacuum, we
can assume that | q(t)| \infty = | q0| \infty <\infty . This gives the a priori pointwise bound

(4.5) | e(t, x)| \lesssim \rho (t, x).

The argument can be bootstrapped to higher order derivatives (see [49, sec. 2]) as
follows. The next order quantity q1 = qx/\rho is again transported:

(4.6) (q1)t + u(q1)x = 0.

Solving for e\prime (t, \cdot ), we obtain another a priori pointwise bound:

(4.7) | e\prime (t, x)| \lesssim | \rho \prime (t, x)| + \rho (t, x).

Continuing in the same manner, q2 = (q1)x/\rho , etc., we obtain

(4.8) | e(k)(t, x)| \lesssim | \rho (k)(t, x)| + \cdot \cdot \cdot + \rho (t, x), k = 0, 1, 2 . . . .

Using e allows one to rewrite the continuity equation in parabolic form:

(4.9) \rho t + u\rho x + e\rho = \rho L\phi (\rho ).

Similarly, one can write the equation for the momentum m = \rho u:

(4.10) mt + umx + em = \rho L\phi (m).

With a priori bounds on the density established in the next section, we can view
(4.9)--(4.10) as a fractional parabolic system with rough drift and bounded force,
which opens the possibility for applying some of the tools recently developed for such
equations.
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4.2. Bounds on the density. Let us first make one trivial remark: if e0 =
0, then the continuity equation becomes a pure drift-diffusion, and hence by the
maximum principle the density remains within the confines of its initial bounds:

(4.11) \rho 
0
\leqslant \rho (t, x) \leqslant \=\rho 0.

In general, however, the e-quantity introduces a Riccati term that needs to be con-
trolled by the singularity of the kernel. First, we establish a bound from below.

Lemma 4.3. Let (\rho , u) be a smooth solution of the topological model (4.1), with
1 \leqslant \alpha < 2, subject to initial density \rho 0 away from vacuum, 0 < \rho 

0
\leqslant \rho 0(x) \leqslant \=\rho 0 <\infty .

Then the density obeys the following bounds for all time:

(4.12)
c

1 + t
\leqslant \rho (t, x) \leqslant \=\rho (M0, | q0| \infty , \phi ), x \in \BbbT , t \geqslant 0.

Proof. Let us recall that the continuity equation can be rewritten as

(4.13) \rho t + u\rho x =  - q\rho 2 + \rho L\phi (\rho ).

Let \rho  - and x - denote the minimum value of \rho and a point where such value is
achieved. Invoking Lemma A.1 to justify the pointwise evaluation, we obtain

d

dt
\rho  - \geqslant  - | q0| \infty \rho 2 - + \rho  - 

\int 
\BbbT 
\phi (x - , y)(\rho (y, t) - \rho  - ) dy \geqslant  - | q0| \infty \rho 2 - .

The lower bound in (4.12) follows.
Evaluating the mass equation at extreme maximum, we obtain

d

dt
\rho + \leqslant | q0| \infty \rho 2+ + \rho +

\int 
| z| <R0

1

M0| z| \alpha 
(\rho (t, x+ + z) - \rho +) dz.

Let us further reduce the region of integration to \varepsilon < | z| < R0 for any fixed \varepsilon > 0.
By choosing \varepsilon small enough, we can ensure that\int 

\varepsilon <| z| <R0

1

| z| \alpha 
> 2| q0| \infty M0.

Then for that fixed \varepsilon we have

d

dt
\rho + \leqslant  - | q0| \infty \rho 2+ + C\rho +.

The result follows.

4.3. Continuation of solutions. Our goal in this section is to establish a gen-
eral continuation result that relies on the uniform H\"older continuity of the density.
The latter will be justified in section 4.4.

Proposition 4.4. Consider a local solution to a topological model with 1 \leqslant \alpha < 2
given by Theorem 4.1. Suppose there are constants \rho , \=\rho > 0 such that

(4.14) \rho \leqslant \rho (t, x) \leqslant \=\rho , (t, x) \in [0, T )\times \BbbT .

Furthermore, suppose that \rho is uniformly H\"older on [0, T ), i.e., there exists \gamma > 0
such that

| \rho (t, x+ z) - \rho (t, x)| \leqslant C| z| \gamma , (t, x, z) \in [0, T )\times \BbbT \times \BbbT .(4.15)

Then the solution remains uniformly in the Sobolev classes (u, \rho ) \in Hs+1 \times Hs+\alpha on
[0, T ) and, hence, can be continued beyond T .
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Proof. We split the proof into five steps. In steps 1--2 we establish control over
derivatives of the density up to order s. Remarkably, this can be done independently
of the momentum equation. Such estimates provide bounds on the velocity derivatives
up to order s - 1. In step 3 we develop energy estimates for \rho (s+1), a necessary step
before tackling | u(s)| \infty , which is done in step 4. Finally, energy estimates on u(s+1) will
finalize the argument with the help of coercivity estimates (2.12). All the pointwise
estimates we used in the proof are presented in Appendix B.

Step 1: Control over | \bfitrho \prime | \infty . Let us differentiate (4.13):

(4.16) \partial t\rho 
\prime + u\rho \prime \prime + u\prime \rho \prime + e\prime \rho + e\rho \prime = \rho \prime L\phi \rho + \rho L\phi \prime \rho + \rho L\phi \rho 

\prime .

Using again u\prime = e - L\phi \rho , we rewrite

\partial t\rho 
\prime + u\rho \prime \prime + e\prime \rho + 2e\rho \prime = 2\rho \prime L\phi \rho + \rho L\phi \prime \rho + \rho L\phi \rho 

\prime .

Evaluating at a point x where | \rho \prime | achieves its maximum and multiplying by \rho \prime , we
obtain

(4.17) \partial t| \rho \prime | 2 + e\prime \rho \rho \prime + 2e| \rho \prime | 2 = 2| \rho \prime | 2L\phi \rho + \rho \prime \rho L\phi \prime \rho + \rho \rho \prime L\phi \rho 
\prime .

In view of (4.5) and (4.7) we can bound

| e\prime \rho \rho \prime + 2e| \rho \prime | 2| \leqslant C(| \rho \prime | 2 + | \rho \prime | ).

Thus,

(4.18) \partial t| \rho \prime | 2 \leqslant C(| \rho \prime | 2 + | \rho \prime | ) + 2| \rho \prime | 2L\phi \rho + \rho \prime \rho L\phi \prime \rho + \rho \rho \prime L\phi \rho 
\prime .

Let us note in passing that Lemma A.1 justifies pointwise evaluation of all operators
involved. Due to the bound from below on \rho , the last term provides dissipation.
Indeed, let us note the identity

\rho \prime (x)\delta z\rho 
\prime (x) =  - 1

2
| \delta z\rho \prime (x)| 2 +

1

2
((\rho \prime (x+ z))2  - (\rho \prime (x))2).

Since x is a point of maximum, we can see that the second difference is negative.
Thus,

(4.19) \rho \rho \prime L\phi \rho 
\prime \leqslant  - c1D\alpha \rho 

\prime (x),

where

D\alpha \rho 
\prime (x) =

\int 
\BbbR 

| \delta z\rho \prime (x)| 2

| z| 1+\alpha 
h(z) dz.

Let us recall the nonlinear estimate on D\alpha \rho 
\prime (x) obtained in Constantin and Vicol [18],

which will play a crucial role in what follows:

(4.20) D\alpha \rho 
\prime (x) \geqslant C

| \rho \prime (x)| 2+\alpha 

| \rho | \alpha \infty 
 - c| \rho \prime | 22.

Here the  - c| \rho \prime | 22 appears when we complement the cutoff function h to the full unity.
Given a uniform bound on | \rho | \infty , we further estimate, keeping half of the dissipation
as is for subsequent usage,

(4.21) D\alpha \rho 
\prime (x) \geqslant 

1

2
D\alpha \rho 

\prime (x) + C| \rho \prime (x)| 2+\alpha  - c| \rho \prime | 22.
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Because of the second term in (4.21), all powers of \rho below 2 + \alpha which appear in
(4.18) are absorbed. So in particular at this stage we can rewrite (4.18) as

(4.22) \partial t| \rho \prime | 2 \leqslant C + 2| \rho \prime | 2L\phi \rho + \rho \prime \rho L\phi \prime \rho  - 1

2
D\alpha \rho 

\prime (x) - c| \rho \prime (x)| 2+\alpha .

We now invoke the estimates on the operators L\phi \rho and L\phi \prime \rho obtained in Lemma B.1
and Lemma B.2, respectively. We have, knowing that by our assumption the density
is uniformly H\"older continuous,

(4.23) | \rho \prime | 2\infty | L\phi \rho (x)| \lesssim r1 - 
\alpha 
2 | \rho \prime | 2\infty 

\sqrt{} 
D\alpha [\rho \prime ](x) + r\gamma  - \alpha | \rho \prime | 2\infty + r2 - \alpha | \rho \prime | 4\infty .

Let us fix a small \varepsilon > 0 to be determined later and define r = \varepsilon 
| \rho \prime | \infty . Then the above

is bounded by

\lesssim \varepsilon 1 - 
\alpha 
2 | \rho \prime | 1+

\alpha 
2\infty 
\sqrt{} 

D\alpha [\rho \prime ](x) + c\varepsilon | \rho \prime | 2+\alpha  - \gamma 
\infty + \varepsilon 2 - \alpha | \rho \prime | 2+\alpha 

\infty 

\lesssim \varepsilon 1 - 
\alpha 
2 | \rho \prime | 2+\alpha 

\infty + \varepsilon 1 - 
\alpha 
2 D\alpha [\rho 

\prime ](x) + \varepsilon | \rho \prime | 2+\alpha 
\infty + C\varepsilon + \varepsilon 2 - \alpha | \rho \prime | 2+\alpha 

\infty .

For \varepsilon sufficiently small we can see that all these terms except for the free constant get
absorbed into the dissipation term in view of (4.21). Continuing to the next term, in
view of Lemma B.2, and with the same choice of scale r, we obtain

| \rho \prime | \infty | L\phi \prime \rho (x)| \lesssim r1 - 
\alpha 
2 | \rho \prime | 2\infty 

\sqrt{} 
D\alpha [\rho \prime ](x) + r\gamma  - \alpha | \rho \prime | 2\infty + r2 - \alpha | \rho \prime | 4\infty ,

which exactly repeats (4.23).
Going back to (4.22), we arrive at

(4.24) \partial t| \rho \prime | 2 \leqslant c1  - c2D\alpha \rho 
\prime .

This finishes the proof of control over \rho \prime .
Step 2: Control over | \bfitrho (\bfits )| \infty and | \bfitu (\bfits  - \bfone )| \infty . We now establish uniform

control over the maximal allowed derivative of \rho in the L\infty metric. Note that Hs+\alpha 

embeds into W s,\infty for the range in question 1 \leqslant \alpha < 2. So, initially and on the local
time interval [0, T ) we have the density in W s,\infty class nonuniformly at the moment.
Once this step is accomplished, we obtain automatically a uniform bound on u(s - 1).
Indeed, by Lemma B.4,

| u(s - 1)| \infty \leqslant | e(s - 2)| \infty +| (L\phi \rho )
(s - 2)| \infty \lesssim | \rho (s - 2)| \infty +

\sqrt{} 
D\alpha [\rho (s - 1)]+| \rho (s - 1)| \infty \lesssim C+| \rho (s)| \infty .

We will argue by induction. The initial hypothesis was established in the previous
step. Let us now assume that we have a uniform control over | \rho (k - 1)| \infty for 2 \leqslant k \leqslant s
and obtain control over | \rho (k)| \infty .

Differentiating the continuity equation k times and expanding, we obtain

(4.25) \partial t\rho 
(k) + u\rho (k+1) +

k\sum 
l=1

ck,lu
(l)\rho (k+1 - l) + u(k+1)\rho = 0.

Evaluating at the maximum of | \rho (k)| and multiplying by \rho (k) the term u\rho (k+1) drops
out. In what follows we replace all u's with the corresponding e-expression. So, let
us consider the endpoint case first:

\rho (k)u(k+1)\rho = \rho (k)e(k)\rho  - \rho (k)(L\phi \rho )
(k)\rho .
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By the induction hypothesis and (4.8) we have

| e(k)| \lesssim | \rho (k)| + C,

and so

| \rho (k)e(k)\rho | \lesssim | \rho (k)| 2 + C.

Next, we have

(L\phi \rho )
(k) = L\phi (\rho 

(k)) + [(L\phi \rho )
(k)  - L\phi (\rho 

(k))].

For the dissipation, we have, as usual, in view of the nonlinear maximum estimate
and the fact that \rho (k - 1) is under control,

(4.26) \rho (k)L\phi (\rho 
(k)) \lesssim  - D\alpha [\rho 

(k)](x) - | \rho (k)| 2+\alpha 
\infty .

For the commutator we encounter a cubic term of top order in the case k = 2.
Therefore, we use (B.5) with small \varepsilon :

| \rho \prime \prime [(L\phi \rho )
\prime \prime  - L\phi (\rho 

\prime \prime )]| \lesssim | \rho \prime \prime | \infty 
\sqrt{} 

D\alpha [\rho \prime \prime ](x) + \varepsilon | \rho \prime \prime | 3\infty + C\varepsilon \lesssim | \rho \prime \prime | 2\infty + \varepsilon D\alpha [\rho 
\prime \prime ](x) + \varepsilon | \rho \prime \prime | 3\infty + C\varepsilon .

In view of (4.26), the terms \varepsilon D\alpha [\rho 
\prime \prime ](x) + \varepsilon | \rho \prime \prime | 3\infty are absorbed by dissipation. For

general k \geqslant 3 , we use (B.4) by replacing
\sqrt{} 

D\alpha [\rho (k - 1)](x) \lesssim | \rho (k)| \infty :

| \rho (k)(L\phi f)
(k)  - L\phi (f

(k))(x)| \lesssim | \rho (k)| \infty 
\sqrt{} 

D\alpha [\rho (k)](x) + | \rho (k)| 2\infty + 1 \lesssim \varepsilon D\alpha [\rho 
(k)](x) + c\varepsilon | \rho (k)| 2\infty + 1.

Again, the dissipation term is absorbed.
Next, let us look into intermediate terms, 1 \leqslant l \leqslant k,

\rho (k)u(l)\rho (k+1 - l) = \rho (k)e(l - 1)\rho (k+1 - l)  - \rho (k)(L\phi \rho )
(l - 1)\rho (k+1 - l).

Since l  - 1 \leqslant k  - 1, we have all e(l - 1) uniformly bounded; hence,

| \rho (k)e(l - 1)\rho (k+1 - l)| \lesssim | \rho (k)| 2 + C.

Finally for the remaining terms \rho (k)(L\phi \rho )
(l - 1)\rho (k+1 - l) we appeal to Lemma B.4. So,

if l = k, by (B.7)

| \rho (k)(L\phi \rho )
(k - 1)(x)\rho \prime | \lesssim | \rho (k)| \infty (

\sqrt{} 
D\alpha [\rho (k)](x) + | \rho (k)| \infty + 1) \lesssim \varepsilon D\alpha [\rho 

(k)](x) + c\varepsilon | \rho (k)| 2\infty + 1,

so this term is taken care of. For l = k  - 1, if k = 2, we estimate, using the more
refined bound (B.1),

| \rho \prime \prime (L\phi \rho )\rho 
\prime \prime | \lesssim \varepsilon | \rho \prime \prime | 3\infty + c\varepsilon | \rho \prime \prime | 2\infty ,

which is absorbed. And for k > 2, we obtain from (B.8)

| \rho (k)(L\phi \rho )
(k - 2)\rho \prime \prime | \lesssim | \rho (k)| 2\infty + 1.

Finally, for all 1 \leqslant l \leqslant k  - 2, we use (B.9):

| \rho (k)(L\phi \rho )
(l - 1)\rho (k+1 - l)| \lesssim | \rho (k)| 2\infty + 1.

We have obtained

\partial t| \rho (k)| 2\infty \lesssim | \rho (k)| 2\infty + 1,
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and the result follows.
Step 3: Energy estimates for \bfitrho (\bfits +\bfone ). Before going into estimates for the

momentum, we take one more intermediate step by establishing that \rho (s+1) \in L\infty 
t L

2
x\cap 

L2
tH

\alpha /2
x . The basic energy estimate for \rho (s+1) is obtained in the standard way. To

simplify some computations, let us note the a priori bound

\| u\| Cs - 1 \leqslant \| e\| Cs - 2 + \| L\phi \rho \| Cs - 2 \lesssim \| \rho \| Cs - 2 +
\sqrt{} 

D\alpha [\rho (s - 1)] + \| \rho \| Cs - 1 \lesssim C + \| \rho \| Cs \leqslant C.

With this and expansion (4.25) we obtain

d

dt
| \rho (s+1)| 22 \lesssim | \rho (s+1)| 22 +

\int 
\BbbT 
\rho (s+1)u(s)\rho \prime \prime dx+

\int 
\BbbT 
\rho (s+1)u(s+1)\rho \prime dx+

\int 
\BbbT 
\rho (s+1)u(s+2)\rho dx.

By replacing the remaining velocities with e - L\phi \rho we now estimate each term:\bigm| \bigm| \bigm| \bigm| \int 
\BbbT 
\rho (s+1)u(s)\rho \prime \prime dx

\bigm| \bigm| \bigm| \bigm| \lesssim | \rho (s+1)| 1| \rho (s - 1)| \infty | \rho \prime \prime | \infty +

\bigm| \bigm| \bigm| \bigm| \int 
\BbbT 
\rho (s+1)(L\phi \rho )

(s - 1)\rho \prime \prime dx

\bigm| \bigm| \bigm| \bigm| ;
applying (B.8) with k = s+ 1,

\lesssim | \rho (s+1)| 2 + | \rho (s+1)| 22 + \| \rho \| 2Hs+\alpha /2 \lesssim | \rho (s+1)| 22 + \varepsilon \| \rho \| 2Hs+1+\alpha /2 + c\varepsilon .

The Hs+1+\alpha /2-norm will be absorbed into dissipation. Next,\int 
\BbbT 
\rho (s+1)u(s+1)\rho \prime dx \lesssim 

\int 
\BbbT 
\rho (s+1)\rho (s)\rho \prime dx+

\int 
\BbbT 
\rho (s+1)(L\phi \rho )

(s)\rho \prime dx,

and applying (B.7),

\lesssim | \rho (s+1)| 22 +
\int 
\BbbT 
| \rho (s+1)(x)| 

\sqrt{} 
D\alpha [\rho (s+1)](x) dx+ \| \rho \| 2Hs+\alpha /2 \lesssim | \rho (s+1)| 22 + \varepsilon \| \rho \| 2Hs+1+\alpha /2 + c\varepsilon .

Finally, \int 
\BbbT 
\rho (s+1)u(s+2)\rho dx =

\int 
\BbbT 
\rho (s+1)e(s+1)\rho dx - 

\int 
\BbbT 
\rho (s+1)(L\phi \rho )

(s+1)\rho dx.

Via (4.8) the first term is bounded by | \rho (s+1)| 22. As for the second we use commutator
estimates\int 

\BbbT 
\rho (s+1)(L\phi \rho )

(s+1)\rho dx \lesssim  - \| \rho \| 2Hs+1+\alpha /2 +

\int 
\BbbT 
| \rho (s+1)(x)| 

\sqrt{} 
D\alpha [\rho (s+1)](x) dx

+

\int 
\BbbT 
| \rho (s+1)(x)| 

\sqrt{} 
D\alpha [\rho (s)](x) dx+| \rho (s+1)| 22 \lesssim  - \| \rho \| 2Hs+1+\alpha /2+\varepsilon \| \rho \| 2Hs+1+\alpha /2+c\varepsilon | \rho (s+1)| 22.

All the estimates now add up to

d

dt
| \rho (s+1)| 22 \lesssim  - 1

2
\| \rho \| 2Hs+1+\alpha /2 + c\varepsilon | \rho (s+1)| 22 + c\varepsilon .

This shows that \rho (s+1) \in L\infty 
t L

2
x \cap L2

tH
\alpha /2
x , and the step is complete.

Step 4: Control over | \bfitu (\bfits )| \infty . Due to close resemblance of the momentum
equation (4.10) to the continuity equation written in parabolic form (4.9), it is easier
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to work with the momentum variable m. Since all the high order spaces are Banach
algebras, establishing control over m is equivalent to establishing control over u:

\| u\| X \lesssim \| m\| X
\bigm\| \bigm\| \rho  - 1

\bigm\| \bigm\| 
X

\lesssim \| m\| X\| \rho \| X , \| m\| X \lesssim \| u\| X\| \rho \| X ,

which applies to X = Hs, Cs, etc. Knowing that \rho \in X shows that \| u\| X \sim \| m\| X .
In particular, this is the case for all Ck, k \leqslant s.

We do have automatic uniform bound in Cs - 1 as a consequence of the previous
step. Indeed, by Lemma B.4,

\| m\| Cs - 1 \lesssim \| u\| Cs - 1 \leqslant \| e\| Cs - 2 + \| L\phi \rho \| Cs - 2 \lesssim \| \rho \| Cs - 2 +
\sqrt{} 
D\alpha [\rho (s - 1)] + \| \rho \| Cs - 1

\lesssim C + \| \rho \| Cs \leqslant C.

So, essentially we need to complete one more step.
Differentiating (4.10) s times, testing with m(s), and evaluating at the maximum,

we obtain

\partial t| m(s)| 2\infty +m(s)
s\sum 

l=1

u(l)m(s+1 - l) + (em)(s)m(s) = (\rho L\phi m)(s)m(s).

The e-term is under control:

| (em)(s)m(s)| \leqslant | (em)(s)| \infty | m(s)| \infty \lesssim \| \rho \| Cs\| m\| 2Cs \lesssim \| m\| 2Cs .

Next, using the induction hypothesis,\bigm| \bigm| \bigm| \bigm| \bigm| m(s)
s\sum 

l=1

u(l)m(s+1 - l)

\bigm| \bigm| \bigm| \bigm| \bigm| \lesssim (| u\prime | + \cdot \cdot \cdot + | u(s - 1)| )| m(s)| 2\infty + | u(s)| | m(s)| | m\prime | \infty \lesssim | m(s)| 2\infty .

So, further argument is reduced to estimating the dissipation term. We have for all
1 \leqslant l \leqslant s

| m(s)\rho (l)(L\phi m)(s - l)(x)| \lesssim | m(s)| \infty | (L\phi m)(s - l)(x)| 

and using Lemma B.4,

\lesssim | m(s)| \infty 
\biggl( \sqrt{} 

D\alpha [m(s)](x) + | m(s)| \infty + C

\biggr) 
\lesssim c\varepsilon | m(s)| 2\infty + \varepsilon D\alpha [m

(s)](x) + C.

The D\alpha -term will be absorbed subsequently. So, it comes down to

\rho (L\phi m)(s)m(s).

As usual, L\phi (m
(s))m(s) produces dissipation D\alpha [m

(s)](x), and all that remains to
estimate is the commutator, for which we use Lemma B.3 with r \sim 1:

| m(s)| \infty | (L\phi m)(s)(x) - L\phi (m
(s))(x)| \lesssim | m(s)| \infty 

\biggl( \sqrt{} 
D\alpha [m(s)](x) +

\sqrt{} 
D\alpha [\rho (s)](x)

\biggr) 
+| m(s)| 2\infty 

c\varepsilon | m(s)| 2\infty + \varepsilon D\alpha [m
(s)](x) + \varepsilon D\alpha [\rho 

(s)](x).

It remains to notice that

| D\alpha [\rho 
(s)](x)| \lesssim | \rho (s+1)| 2q for q >

2

2 - \alpha 
.
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5820 ROMAN SHVYDKOY AND EITAN TADMOR

Since H\alpha /2 \lhook \rightarrow H1/2 \lhook \rightarrow Lq, for any q < \infty , we have | \rho (s+1)| 2q \in L1 by the previous

step. We conclude that the term D\alpha [\rho 
(s)](x) is L1-integrable in time. Thus,

\partial t| m(s)| 2\infty \lesssim | m(s)| 2\infty  - D\alpha [m
(s)] + f(t),

where f \in L1([0, T ]). This finishes the step.
Step 5: Energy estimates for \bfitu (\bfits +\bfone ) and conclusion of the proof. Since

the momentum equation is structurally the same as the continuity, this step is entirely
similar to Step 4. The use of commutator estimates of Lemma B.3 and Lemma B.4
is identical to f = m due to the fact that at this point we are in the same position in
terms of control of m as we were at the beginning of Step 4. We thus conclude

m(s+1) \in L\infty 
t L

2
x \cap L2

tH
\alpha /2
x ,

and via Banach algebra inequality \| u\| X \leqslant \| m\| X\| 1/\rho \| X \sim \| m\| X\| \rho \| X for the classes
in question, we obtain

u(s+1) \in L\infty 
t L

2
x \cap L2

tH
\alpha /2
x .

To conclude the proof it remains to notice that via the e-quantity, we have (L\phi \rho )
(s+1) \in 

L\infty 
t L

2
x. Due to (2.12),

\| \rho \| 2Hs+\alpha \lesssim C + \| \rho \| NHs+\alpha /2 \lesssim C + \| \rho \| NHs+1 .

In Step 3 we established uniform control over \| \rho \| Hs+1 . The proof is finished.

4.4. H\"older regularization of the density. In this section we derive the
H\"older regularity of the density; its H\"older regularization follows from the fractional
diffusion embedded in our topological alignment term. The proof is obtained by
various techniques of fractional parabolicity depending on \alpha . Combined with Propo-
sition 4.4, we immediately obtain global existence and conclude Theorem 1.5.

4.4.1. Case 1 < \bfitalpha < 2 via Schauder. In this particular case the regular-
ization will follow from a kinematic argument based on the Schauder estimates as in
[10, 33]. So, we start by rewriting the relation between \rho , u, and e as follows:

(4.27) \partial  - 1
x L\phi \rho = \partial  - 1

x e - u \in L\infty .

In the purely metric case this of course implies \rho \in C1 - \alpha immediately. For the
topological models the conclusion is not so straightforward and in fact may not even
be true up to regularity 1 - \alpha .

First let us make an observation that L\phi \rho = \partial x(F\rho ), where

F\rho (x) =

\int 
sgn(z) ln d\rho (x+ z, x)

| z| \alpha 
h(z) dz.

Next, by symmetrization

F\rho (x) =
1

2

\int 
ln d\rho (x+ z, x) - ln d\rho (x - z, x)

| z| \alpha 
sgn(z)h(z) dz.

Now we use the expansion

ln d\rho (x+ z, x) - ln d\rho (x - z, x)

= [d\rho (x+ z, x) - d\rho (x - z, x)]

\int 1

0

d\theta 

\theta d\rho (x+ z, x) + (1 - \theta )d\rho (x - z, x)
.

(4.28)
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Next,

[d\rho (x+ z, x) - d\rho (x - z, x)] sgn(z) =

\int x+z

x

\rho (y) dy +

\int x - z

x

\rho (y) dy =

\int z

 - z

\rho (x+ w) sgnw dw.

We can now subtract the total mass from the density without changing the result.
However, the function \rho  - M0 is a mean-zero function. Hence, \rho  - M0 = f \prime for some
f . Continuing, we obtain

[d\rho (x+ z, x) - d\rho (x - z, x)] sgn(z) =

\int z

 - z

f \prime (x+ w) sgn(w) dw = f(x+ z) + f(x - z) - 2f(x),

which is the second order finite difference of f . We thus obtain

F\rho (x) =

\int 
[f(x+ z) + f(x - z) - 2f(x)]K(x, z, t) dz,

where the kernel K(x, z, t) is given by

K(x, z, t) =
h(z)

| z| \alpha 

\int 1

0

d\theta 

\theta d\rho (x+ z, x) + (1 - \theta )d\rho (x - z, x)
.

It satisfies the following four conditions:

(i)
1| z| <R0

| z| 1+\alpha \lesssim K(x, z, t) \lesssim 
1| z| <2R0

| z| 1+\alpha ;

(ii) K(x, - z, t) = K(x, z, t);
(iii) | z| 2+\alpha | K(x+ h, z, t) - K(x, z, t)| \leqslant C| h| ;
(iv) | \partial z(| z| 1+\alpha K(x, z, t))| \leqslant C| z|  - 1.

Here the inequalities involve generic constants which may depend only on the density
but not on its derivatives. Indeed, (i) is trivial. As for (iv), we have

(4.29) | z| 1+\alpha K(x, z, t) = h(z)| z| 
\int 1

0

[\theta d\rho (x+ z, x) + (1 - \theta )d\rho (x - z, x)]
 - 1

d\theta .

Given that d\rho (x+ z, x) \sim | z| , it is clear that this expression is uniformly bounded by
a constant. It will remain so if \partial z falls on h. The bound gains a negative power | z|  - 1

when \partial z falls on | z| . Next, observe that

\partial zd\rho (x\pm z, x) = \rho (x\pm z) sgn(z),

which is a uniformly bounded quantity. So, any derivative that falls on the distance
inside the expression (4.29) reduces the power of that term by 1, while the rest remains
uniformly bounded.

To verify (iii) we can even prove a stronger inequality:

| z| 2+\alpha | \partial xK(x, z, t)| \leqslant C.

Indeed, in this case we recall (2.9), which implies that \partial xd\rho (x\pm z, x) remains uniformly
bounded. So, we have

| z| 2+\alpha \partial xK(x, z, t) = h(z)| z| 2\partial x
\int 1

0

[\theta d\rho (x+ z, x) + (1 - \theta )d\rho (x - z, x)]
 - 1

d\theta .

In view of the above observation, the order of the partial of the entire expression in
parentheses is | z|  - 2. This finishes the verification.
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So, the initial relation (4.27) can be stated now as a fractional elliptic problem:

(4.30)

\int 
[f(x+ z) + f(x - z) - 2f(x)]K(x, z, t) dz = g(x) \in L\infty .

Under the assumptions (i)--(iv), it is known (see, for example, [10, 33]) that any
bounded solution f to (4.30) satisfies f \in C1+\gamma for some positive \gamma > 0. This readily
implies \rho \in C\gamma and concludes the argument.

4.4.2. Case \bfitalpha = 1 via De Giorgi. In this section we present a regulariza-
tion result for the case \alpha = 1. We state our result more precisely in the following
proposition.

Proposition 4.5. Consider the case \alpha = 1. Assume the density is uniformly
bounded (4.14). Then there exists a \gamma > 0 such that [\rho ]\gamma \leqslant C

t\gamma for all t \in (0, T ]. Here
C depends on the bounds on the density on [0, T ].

Let us make some preliminary remarks. Our proof is based on blending our model
into the settings of Caffarelli, Chan, and Vasseur's work [9], which adopts the method
of De Giorgi to nonlocal equations with symmetric kernels. We note, however, that
the result of [9] is not directly applicable to our model due to the presence of drift
and force in the continuity equation, and in addition we lack symmetry of the kernel.
The forced case was considered in a similar situation in Golse, Imbert, and Vasseur's
paper [24], where the control over the force is achieved via prescaling of the equation.
We will use a similar argumentation here as well. We proceed in five steps.

Step 1: Symmetric form of the continuity equation. Let us recall the
continuity equation in parabolic form:

(4.31) \rho t + u\rho x = \rho L\phi \rho  - e\rho .

To get rid of the \rho prefactor we will perform the following procedure: divide (4.31)
by \rho and write evolution equation for the new variable w = ln \rho ,

wt + uwx = L\phi e
w  - e.

Using that

ew(y)  - ew(x) = (w(y) - w(x))

\int 1

0

\rho \theta (y)\rho 1 - \theta (x) d\theta ,

we further rewrite the equation as

(4.32) wt + uwx = LKw  - e,

where

K(x, y, t) = \phi (x, y)

\int 1

0

\rho \theta (y)\rho 1 - \theta (x) d\theta .

In view of the bounds on the density, the new kernel satisfies

(4.33)
1| x - y| <R0

| x - y| 1+\alpha 
\lesssim K(x, y) \lesssim 

1| x - y| <2R0

| x - y| 1+\alpha 

and now is fully symmetric:

K(x, y, t) = K(y, x, t).
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Clearly, H\"older continuity of w is equivalent to that of \rho , so we will work with (4.32)
instead.

In what follows we treat the term  - e as a passive source. However, we cannot
treat u similarly since the derivative ux that will come up in the truncated energy
inequality will have to be recycled back through its connection with e. We therefore
first discuss scaling properties of the system.

Step 2: Rescaling. Let us adopt the point of view that our solution (u, \rho ) is
defined periodically on the real line \BbbR . Elementary computation shows that if (u, \rho )
is a solution and R > 0, then the new pair

(4.34) uR = u

\biggl( 
t0 +

t

R\alpha 
, x0 +

x

R

\biggr) 
, \rho R = \rho 

\biggl( 
t0 +

t

R\alpha 
, x0 +

x

R

\biggr) 
satisfies the rescaled system

(4.35)

\left\{   
\partial t\rho R +R1 - \alpha (\rho RuR)x = 0,

\partial tuR +R1 - \alpha uRu
\prime 
R =

\int 
\BbbR 
\rho R(y)(uR(y) - uR(x))\phi R(x, y) dy,

where the new kernel is given by

\phi R(x, y, t) =
1

R1+\alpha 
\phi 

\biggl( 
x0 +

x

R
, x0 +

y

R
, t0 +

t

R\alpha 

\biggr) 
.

Note that for a given bound on the density c < \rho < C on a given time interval I, the
new kernel still satisfies

\lambda 
1| x - y| \leqslant R0R

| x - y| 1+\alpha 
\leqslant \phi R(x, y) \leqslant \Lambda 

1| x - y| <2R0R

| x - y| 1+\alpha 

on time interval R\alpha (I  - t0), and the constants \Lambda , \lambda are independent of R. Thus,
if R > 1, the bound from below holds on a wider space and time intervals. The
corresponding e-quantity rescales to

eR = R1 - \alpha u\prime R +L\phi R
\rho R =

1

R\alpha 
e

\biggl( 
t0 +

t

R\alpha 
, x0 +

x

R

\biggr) 
and satisfies

\partial teR +R1 - \alpha (uReR)x = 0.

Hence, eR/\rho R is transported, and as a consequence we obtain an priori bound

(4.36) | eR| \lesssim 
1

R\alpha 
\rho R \lesssim 

1

R\alpha 
.

The rescaled continuity equation becomes

\partial t\rho R +R1 - \alpha uR\rho 
\prime 
R + eR\rho R = \rho RL\phi R

\rho R.

The corresponding w-equation reads

\partial twR +R1 - \alpha uRw
\prime 
R = LKR

w  - eR,
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where the kernel KR satisfies the same bound (4.33) for all R \geqslant 1.
So, it is clear that the drift remains under control for \alpha \geqslant 1 and is scaling invariant

in the case \alpha = 1.
Step 3: First De Giorgi lemma. We return to the symmetrized version of the

continuity equation (4.32), where the only extra term that prevents us from directly
applying [9] is the drift. Since, in addition, the drift is not div-free and nonlinearly
depends upon \rho , we will take extra care to maintain the protocol of relation between
w and u after rescalings.

First, we start by noting that it suffices to work on time interval [ - 3, 0] and prove
uniform H\"older continuity on [ - 1, 0]. Second, in view of (4.36), if necessary we can
rescale the equation by a large R > 1 and assume without loss of generality that
| e| L\infty (\BbbR \times [ - 3,0)) = \varepsilon 0 < 1, where \varepsilon 0 will be determined at a later stage and will in fact
depend only on \Lambda , \lambda .

The argument of [9] uses rescaling of the form \omega = wR

C1
+ C2, where R \geqslant 1, and

0 < C1 \leqslant C0 = max\{ 1, | w| \infty \} , and w is the original solution, and C2 is a constant
which changes from step to step. Let us note that the new quantity \omega satisfies

\omega t + uR\omega x = LKR
\omega + fR,C1

,

| fR,C1
| \infty \leqslant 

\varepsilon 0
RC1

.
(4.37)

To keep control over the source, we therefore impose the following assumption on all
rescalings:

(4.38) RC1 > 1.

We will now derive a truncated energy inequality for \omega .
Let \psi be a Lipschitz function on \BbbR . We always assume that our Lipschitz functions

have slopes bounded by a universal constant. Testing (4.37) with (\omega  - \psi )+, we obtain

1

2

d

dt

\int 
\BbbR 
(\omega  - \psi )2+ dx - 1

2

\int 
(uR)x(\omega  - \psi )2+ dx - 1

2

\int 
uR\psi x(\omega  - \psi )+ dx

=  - BR(\omega , (\omega  - \psi )+) +

\int 
fR,C1(\omega  - \psi )+ dx,

where

BR(h, g) =
1

2

\int 
KR(x, y)(h(y) - h(x))(g(y) - g(x)) dy dx.

Continuing, we obtain

(uR)x = eR  - L\phi R
\rho R = eR  - LKR

wR = eR  - C1LKR
\omega .

We also note that in view of our assumptions and the maximum principle we have a
scaling invariant bound | uR\psi x| \leqslant C. So, as long as in addition RC1 > 1, we obtain

1

2

d

dt

\int 
\BbbR 
(\omega  - \psi )2+ dx+BR(\omega , (\omega  - \psi )+) \leqslant 

C1

2
BR(\omega , (\omega  - \psi )2+) + C(| (\omega  - \psi )+| 1 + | (\omega  - \psi )+| 22).

Note that the B-term on the right-hand side is cubic, while on the left-hand side it is
quadratic. This will help hide the cubic term with the help of the following smallness
assumption:

(4.39) | (\omega  - \psi )+| \infty \leqslant 
1

2C0
.
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Under this assumption we have

BR(\omega , (\omega  - \psi )+) - 
C1

2
BR(\omega , (\omega  - \psi )2+) = BR,\omega (\omega , (\omega  - \psi )+),

where BR,\omega is the bilinear form associated with the kernel

KR,\omega (x, y) = KR(x, y)

\biggl[ 
1 - C1

2
((\omega  - \psi )+(x) + (\omega  - \psi )+(y))

\biggr] 
,

which under (4.39) satisfies similar bounds as the original kernel and is symmetric.
Continuing with the energy inequality, we write \omega  - \psi = (\omega  - \psi )+  - (\omega  - \psi ) - and
obtain

BR,\omega (\omega , (\omega  - \psi )+) = BR,\omega ((\omega  - \psi )+, (\omega  - \psi )+) - BR,\omega ((\omega  - \psi ) - , (\omega  - \psi )+)

+BR,\omega (\psi , (\omega  - \psi )+).

The first is the main dissipative term for which we have a coercive bound

BR,\omega ((\omega  - \psi )+, (\omega  - \psi )+) \geqslant c\Lambda ,C0
| (\omega  - \psi )+| 2H1/2  - | (\omega  - \psi )+| 22.

For the second we have after cancellations

 - BR,\omega ((\omega  - \psi ) - , (\omega  - \psi )+) = 2

\int 
KR,\omega (x, y)(\omega  - \psi ) - (y)(\omega  - \psi )+(z) dy dz := P,

which is positive and can be dismissed for the application of the first De Giorgi lemma.
Finally, as in [9], we obtain

| BR,\omega (\psi , (\omega  - \psi )+)| \leqslant 
1

2
BR((\omega  - \psi )+, (\omega  - \psi )+) + | (\omega  - \psi )+| 1 + | \{ \omega  - \psi > 0\} | .

We thus have proved the following energy bound under (4.39) and for any rescaled
solution with RC1 > 1:

d

dt

\int 
\BbbR 
(\omega  - \psi )2+ dx+ | (\omega  - \psi )+| 2H1/2 \lesssim | (\omega  - \psi )+| 22 + | (\omega  - \psi )+| 1 + | \{ \omega  - \psi > 0\} | .

We now recap the first De Giorgi lemma: there exist \delta > 0 and \theta \in (0, 1) such that
any solution \omega to (4.37) satisfying

\omega (t, x) \leqslant 1 + (| x| 1/4  - 1)+ on \BbbR \times [ - 2, 0]

and

| \{ \omega > 0\} \cap (B2 \times [ - 2, 0])| \leqslant \delta 

must have a bound

\omega (t, x) \leqslant 1 - \theta .

The proof proceeds as in [9] with extra care taken for (4.39). We consider the Lipschitz
function

\psi Lk
(x) = 1 - \theta  - \theta 

2k
+ (| x| 1/2  - 1)+.
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For \theta small enough it is clear that (\omega  - \psi Lk
)+ can be made as small as we wish for

all k \in \BbbN , in particular satisfying (4.39). With \theta fixed we can then apply the energy
inequality for all terms (\omega  - \psi Lk

)+, and the argument of [9] proceeds.
Step 4: The second De Giorgi lemma. In the second De Giorgi lemma the

energy bound is used in a somewhat different way. Here the presence of the drift term
requires extra attention as well as condition (4.39). We recall the lemma first. For a

\lambda < 1/3 we define \psi \lambda (x) = ((| x|  - 1
\lambda 4 )

1/4
+  - 1)+. Let also F be nonincreasing with

F = 1 on B1 and F = 0 outside B2. Define

\phi j = 1 + \psi \lambda  - \lambda jF, j = 0, 1, 2.

The lemma claims that there exist \mu , \lambda , \gamma > 0 depending only on \Lambda such that if

\omega (t, x) < 1 + \psi \lambda (x) on \BbbR \times [ - 3, 0]

and

| \{ \omega < \phi 0\} \cap B1 \times ( - 3, - 2)| \geqslant \mu ,

| \{ \omega > \phi 2\} \cap \BbbR \times ( - 2, 0)| \geqslant \delta ,

then necessarily

| \{ \phi 0 < \omega < \phi 2\} \cap \BbbR \times ( - 3, 0)| \geqslant \gamma .

So, if the function has a substantial weight under \phi 0 and later over \phi 2, then it must
leave some appreciable weight in between. The proof goes by application of the energy
inequality to (\omega  - \phi 1)+. However, (\omega  - \phi 1)+ \leqslant \lambda pointwise. Hence, to satisfy (4.39)
it is sufficient to pick \lambda < 1/2C0, among further restrictions which come subsequently
in the course of the proof. Thus, we have

d

dt

\int 
\BbbR 
(\omega  - \phi 1)

2
+ dx+BR,\omega ((\omega  - \phi 1)+, (\omega  - \phi 1)+) + P =  - BR,\omega (\phi 1, (\omega  - \phi 1)+)

+

\int \biggl( 
1

2
uR(\phi 1)x + fR,C1

\biggr) 
(\omega  - \phi 1)+ dx.

All the terms are exactly the same as in [9] except the last one. To bound the
last term we note that (\omega  - \phi 1)+ is supported on B2, where \phi 1 = 1 + \lambda F ; hence
| (\phi 1)x| L\infty (B2) \leqslant C\lambda . Furthermore, as noted above, (\omega  - \phi 1)+ \leqslant \lambda . Hence,\bigm| \bigm| \bigm| \bigm| 12

\int 
uR(\phi 1)x(\omega  - \phi 1)+ dx

\bigm| \bigm| \bigm| \bigm| \leqslant C\lambda 2.

As for the source term, we obtain the same bound provided \varepsilon 0 < \lambda . The resulting
bound repeats another estimate on the term BR,\omega (\phi 1, (\omega  - \phi 1)+) and hence blends
with the rest of section 4 in [9].

The rest of the proof makes no further direct use of the energy inequality and
thus proceeds ad verbatim. The penultimate constant \lambda ends up being dependent
only on \Lambda and C0, which are scaling invariant.

Step 5: Diminishing oscillation and \bfitC \bfitgamma regularity. The first and second
De Giorgi lemmas are now being used to prove that any solution with controlled tails
on [ - 3, 0]\times \BbbR ,

 - 1 - \psi \varepsilon ,\lambda \leqslant w \leqslant 1 + \psi \varepsilon ,\lambda ,
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where

\psi \varepsilon ,\lambda (x) =

\Biggl\{ 
0 if | x| < \lambda  - 4,

[(| x|  - \lambda  - 4)\varepsilon  - 1]+ if | x| \geqslant \lambda  - 4

satisfies

sup
[ - 1,0]\times B1

w  - inf
[ - 1,0]\times B1

w < 2 - \lambda \ast 

for some \lambda \ast > 0. The proof proceeds by application of shift-amplitude rescalings of
the form

wk+1 =
1

\lambda 2
(wk  - (1 - \lambda 2)) =

1

\lambda 2k
w + Ck.

For our sourced equation this is the worst kind of rescaling since it does not come
with a compensated space-time stretching. However, in the argument the number
of iterations is limited to k0 = | [ - 3, 0] \times B3| /\gamma and hence depends only on \Lambda . We
can prescale the equation in the beginning using R\prime > 0 so large that \varepsilon 0 = | fR\prime | \infty <
\lambda 2k0C0 \leqslant \lambda 2k0 . Hence, on each step of the iteration we have | fk| < \lambda , fulfilling the
requirement of Step 4 automatically.

The final iteration consists of the zooming and shifting process:

w1 = w/| w| \infty ,

wk+1 =
1

1 - \lambda \ast /4
((wk)R  - \=wk),

where \=wk is the average over [ - 1, 0] \times B1. On the first step we still have the bound
| f1| < \lambda 2k0 . Subsequently, among other restrictions put on R in [9], we set in addition
R(1  - \lambda \ast /4) > 1, which preserves the bound | f | < \varepsilon 0 for all steps. This finishes the
proof.

5. Further extensions and discussion. The class of topological models can
be extended within our framework to include generalized topological diffusion of type

(5.1) \phi (x,y) =
h(| x - y| )

| x - y| n+\alpha  - \tau 
\times 1

d\tau \rho (x,y)
, \tau > 0.

In fact, this class arises naturally in a hierarchy fashion in commutator estimates
proved below in Appendix B. Our main flocking result of Theorem 1.3 extends to
all \tau \geqslant n. In fact, the most general statement which includes various stronger as-
sumptions on density, and hence, better alignment rates, can be summarized in the
following formulation.

Theorem 5.1. Let (\rho ,u) be a global smooth solution of the topological model with
kernel (5.1). Assume that the density \rho (t, \cdot ) satisfies, for all t > 0,

(5.2) \rho (t,x) \geqslant 
c

(1 + t)\beta 
, 0 \leqslant \beta \leqslant \beta 0 := min

\biggl\{ 
1,

n

2n - \tau 

\biggr\} 
,

and if \tau > n+ \alpha , additionally

(5.3) | \rho (t, \cdot )| \tau  - n
\alpha 

< C.

Then the solution aligns with at least algebraic rate given by

(5.4) | u(t) - u\infty | \infty =
o(1)

t\gamma 
, where \gamma =

1

2

\biggl( 
1 - \beta 

\beta 0

\biggr) 
.
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One notable application of this more general result is for the 1D case when e \equiv 0.
Indeed, in this case we have a uniform bound on the density from above and below
(see (4.11)), and hence the alignment rate improves to \gamma = 1

2 .
More can be said about the density itself. If e = 0, the continuity equation

acquires the structure of the u-equation. Along with the maximum principle comes
the possibility of applying Theorem 5.1 directly to the continuity equation. The
energy law takes the form

d

dt
| \rho | 22 =

\int 
| \rho | 2L\phi \rho dx,

which after symmetrizing becomes\int 
| \rho | 2L\phi \rho dx =  - 1

2

\int 
\phi (x, y)(\rho (x) + \rho (y))(\rho (x) - \rho (y))2 dx dy.

Since the prefactor (\rho (x) + \rho (y)) is uniformly bounded from above and below, this
supplies the energy inequality analogous to (2.5a). We have all the ingredients for a
direct application of Theorem 5.1 (with \beta = 0) to the continuity equation, and we
conclude that \bigm| \bigm| \bigm| \bigm| \rho (t) - 1

2\pi 
M0

\bigm| \bigm| \bigm| \bigm| 
\infty 

=
o(1)\surd 
t
.

Remark 5.2 (about \tau = n). We make another remark concerning the apparent
threshold value of \tau = n. Clearly from (5.2), if \tau \geqslant n, then \rho \geqslant 1

1+t is the weakest
assumption under which the theorem holds, while for \tau < n a more stringent bound
on \rho is required. This can be explained by the fact that the density on the bottom
of \phi needs to compensate for the density on the top inside the diffusion term. The
condition manifests itself even more vividly after taking the limit as \alpha \rightarrow 2. Such
limits are standard in elliptic theory, and so we will not provide many details here.
One can verify the following:

(5.5) lim
\alpha \rightarrow 2

(2 - \alpha )L\phi f(x) = \nabla \cdot 
\bigl( 
\rho  - 

\tau 
n\nabla f

\bigr) 
:= D(f).

The commutator which would appear in the corresponding limit model reads

(5.6) D(\rho u) - uD(\rho ) =
1

\rho \gamma  - 1
\Delta u+

2 - \gamma 

\gamma 
\nabla u\nabla \rho , \gamma =

\tau 

n
.

We can see that \tau = n is the threshold that determines whether the density appears
on the top or the bottom in front of the leading order term. For \tau \geqslant n it amplifies
dissipation in thinner regions as intended in the topological model.

Concerning regularity of solutions in 1D, one can obtain an extension into the
range \alpha < 1. In fact, the continuation criterion of Proposition 4.4 extends directly
as is; in fact, in several technical places this extension is even easier due to the lower
singularity order of the diffusion. The H\"older regularization result can be obtained
by an adaptation of the Silvestre result [52] for forced drift-diffusion equations. The
result assumes the pure fractional Laplacian as a diffusion but, as noted by the author,
applies to more general kernels, even in z: K(x, z, t) = K(x, - z, t). Another necessary
condition to apply [52] is regularity of the drift u \in C1 - \alpha . For this we use the
representation (4.27): u = \partial  - 1

x e - F\rho . Since \partial  - 1
x e \in W 1,\infty , it remains to check that
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F\rho \in C1 - \alpha . The verification again proceeds via an optimization over the cut-off scale
argument. Then, omitting constants,

F\rho (x+ \xi ) - F\rho (x) =

\int 
| z| \geqslant | \xi | 

[ln d\rho (x+ \xi + z, x+ \xi ) - ln d\rho (x+ z, x)]
sgn(z)h(z)

| z| \alpha 
dz

+

\int 
| z| \leqslant | \xi | 

[ln d\rho (x+ \xi + z, x+ \xi ) - ln d\rho (x+ z, x)]
sgn(z)h(z)

| z| \alpha 
dz.

In the first integral, we use Taylor formula (4.28), which yields a bound by | \xi | /| z| 1+\alpha ,
with a uniform constant depending only on (4.14). This results in | \xi | 1 - \alpha , as needed.
In the latter integral, we simply observe that

ln d\rho (x+ \xi + z, x+ \xi ) - ln d\rho (x+ z, x) = ln
d\rho (x+ \xi + z, x+ \xi )

d\rho (x+ z, x)
\sim 1.

So, the order of singularity is | z|  - \alpha , which implies the bound by | \xi | 1 - \alpha , as needed.
A restriction comes in the range 0 < \alpha < 1, or \alpha < \tau for more general models, in

establishing the upper bound on the density. While the lower bound in (4.12) always
holds, the extension to the upper bound reads as follows.

Lemma 5.3. Let (\rho , u) be a smooth solution of the (\tau , \alpha )-model, subject to initial
density \rho 0 away from vacuum, 0 < c < \rho 0 < C < \infty . Assume either that (i) \tau \leqslant \alpha ,
or else (ii) if \tau > \alpha , then the initial condition satisfies

M\tau 
0 | q0| \infty <

R\tau  - \alpha 
0

\tau  - \alpha 
, q0 =

e0
\rho 0
.

Then the density is uniformly bounded in time:

(5.7) \rho (t, x) < C(M0, | q0| \infty , \phi ), x \in \BbbT , t \geqslant 0.

So, for \tau > \alpha we need an extra smallness assumption to achieve the same result.
This condition is scaling invariant; see Step 2 in the proof of Proposition 4.5. We
record the generalization in the following theorem.

Theorem 5.4. Consider the one-dimensional system (1.1) on \BbbT with short-range
topological kernel (5.1) and singularity of order 0 < \alpha < 1. Any nonvacuous initial
data (\rho 0, u0) \in Hs+\alpha \times Hs+1, s \geqslant 3, satisfying the conditions of Lemma 5.3 admits a
unique global in time solution, (\rho , u), in the class

\rho \in Cw(\BbbR +;Hs+\alpha ) \cap L2
loc(R

+;Hs+1+\alpha 
2 ),

u \in Cw(\BbbR +;Hs+1) \cap L2
loc(R

+;Hs+1+\alpha 
2 ).

Appendix A. Pointwise evaluation of topological alignment. Here we
collect necessary formalities related to pointwise evaluations of the operator L\phi and
the commutator C\phi . The statements come with corresponding estimates we used
throughout the text. In fact, we consider the more general class of topological kernels
that we already mentioned in the previous section:

(A.1) \phi (x+ z,x) =
h(| z| )

| z| n+\alpha  - \tau 
\times 1

d\tau \rho (x+ z,x)
, \tau > 0.
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Lemma A.1. For any 0 < \alpha < 2 and f \in C2 one has the natural pointwise
representation formula

(A.2) L\phi f(x) = p.v.

\int 
\BbbT n

(f(x+ z) - f(x))\phi (x+ z,x) dz.

Moreover, for any r > 0,

(A.3) L\phi f(x) =

\int 
\BbbT n

(f(x+z) - f(x) - z\cdot \nabla f(x)1| \bfz | <r(z))\phi (x+z,x) dz+br(x)\cdot \nabla f(x),

where

br(x) = p.v.

\int 
| \bfz | <r

z\phi (x+ z,x) dz

satisfies

(A.4) | br| \infty \leqslant C| \nabla \rho | \infty r2 - \alpha .

Proof. At the core of the proof is a bound on the operator given by

Br\zeta (x) = p.v.

\int 
| \bfz | <r

\zeta (x+ z) z\phi (x+ z,x) dz.

Clearly, Br1 = br. We address it more generally, as was done in preceding sections.
By symmetrization,

Br\zeta (x) =
1

2

\int 
| \bfz | <r

d\tau \rho (x - z,x) - d\tau \rho (x+ z,x)

d\tau \rho (x+ z,x)d\tau \rho (x - z,x)| z| n+\alpha  - \tau 
\zeta (x+ z)zh(z) dz

+
1

2

\int 
| \bfz | <r

\zeta (x+ z) - \zeta (x - z)

d\tau \rho (x - z,x)| z| n+\alpha  - \tau 
zh(z) dz =: I(x) + J(x).

In what follows the constant C will change line to line and may depend on the un-
derlying bounds on the density at hand, (2.2). As for J , we directly obtain

| J(x)| \leqslant C| \nabla \zeta | \infty r2 - \alpha .

For I(x) we first observe that

d\tau \rho (x+ z,x) - d\tau \rho (x - z,x) =
\tau 

n
[dn\rho (x+ z,x) - dn\rho (x - z,x)]

\times 
\int 1

0

\bigl[ 
\theta dn\rho (x+ z,x) + (1 - \theta )dn\rho (x - z,x)

\bigr] \tau 
n - 1

d\theta .

Note that

| dn\rho (x+ z,x) - dn\rho (x - z,x)| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega (\bfz ,0)

(\rho (x+w) - \rho (x - w)) dw

\bigm| \bigm| \bigm| \bigm| \bigm| \leqslant | \nabla \rho | \infty | z| n+1,

and clearly, \int 1

0

[\theta d\rho (x+ z,x) + (1 - \theta )d\rho (x - z,x)]
\tau 
n - 1

d\theta \leqslant C| z| \tau  - n.
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Consequently,

| I(x)| \leqslant C| \nabla \rho | \infty | \zeta | \infty 
\int 
| \bfz | <r

1

| z| n+\alpha  - 2
dz \sim | \nabla \rho | \infty | \zeta | \infty r2 - \alpha .

In conclusion, we obtain the bound

(A.5) | Br\zeta | \infty \leqslant C (| \nabla \rho | \infty | \zeta | \infty + | \nabla \zeta | \infty ) r2 - \alpha .

Note that the bounds above provide a common integrable dominant for the integrands
parametrized by x. So, in addition Br\zeta \in C(\BbbT n).

The bound (A.4) now follows directly from (A.5), and we also have br \in C(\BbbT n).
With the knowledge that the drift is finite, clearly, the right-hand sides of (A.2) and
(A.3) coincide. Denote them L\phi f(x). We now have a task to pass to the limit

\langle L\phi f, g\varepsilon \rangle \rightarrow L\phi f(x0)

for every x0 \in \BbbT n. Splitting the integral, we obtain

\langle L\phi f, g\varepsilon \rangle =
1

2

\int 
\BbbT n\times \BbbT n

\phi (\bfx ,\bfy )(f(\bfy ) - f(\bfx ) - \nabla f(\bfx )(\bfy  - \bfx )1| \bfx  - \bfy | <r)(g\varepsilon (\bfx ) - g\varepsilon (\bfy )) d\bfy d\bfx 

+
1

2

\int 
\BbbT n\times \BbbT n

\phi (\bfx ,\bfy )\nabla f(\bfx )(\bfy  - \bfx )1| \bfx  - \bfy | <r)(g\varepsilon (\bfx ) - g\varepsilon (\bfy )) d\bfy d\bfx = I + J.

Note that J = 1
2 \langle br \cdot \nabla f, g\varepsilon \rangle +

1
2 \langle Br\nabla f, g\varepsilon \rangle . By continuity of Br proved above,

(A.6) J \rightarrow 1

2
br(x0) \cdot \nabla f(x0) +

1

2
(Br\nabla f)(x0).

As for I, we can unwind the symmetrization since each part of the integral is no
longer singular:

I =
1

2

\int 
\BbbT n\times \BbbT n

\phi (x,y)(f(y) - f(x) - \nabla f(x)(y  - x)1| \bfx  - \bfy | <r)g\varepsilon (x) dy dx

 - 1

2

\int 
\BbbT n\times \BbbT n

\phi (x,y)(f(y) - f(x) - \nabla f(x)(y  - x)1| \bfx  - \bfy | <r)g\varepsilon (y) dy dx.

Passing to the limit in each integral, we obtain

I \rightarrow 1

2

\int 
\BbbT n

(f(y) - f(x0) - \nabla f(x0)(y  - x0))\phi (x0,y) dy

 - 1

2

\int 
\BbbT n

(f(x0) - f(x) - \nabla f(x)(x0  - x))\phi (x,x0) dx

=

\int 
\BbbT n

\phi (x0,y)(f(y) - f(x0) - 
1

2
(\nabla f(x0) +\nabla f(y))(y  - x0)1| \bfx 0 - \bfy | <r) dy

=

\int 
\BbbT n

\phi (x0,y)(f(y) - f(x0) - \nabla f(x0)(y  - x0)1| \bfx 0 - \bfy | <r) dy

+
1

2

\int 
\BbbT n

\phi (x0,y)(\nabla f(x0) - \nabla f(y))(y  - x0)1| \bfx 0 - \bfy | <r dy

= L\phi f(x0) - 
1

2
br(x0) \cdot \nabla f(x0) - 

1

2
(Br\nabla f)(x0).

Thus, combining with (A.6), we obtain I+J \rightarrow L\phi f(x0), which completes the proof.
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As a corollary we obtain an analogous representation formula for the commutator.

Lemma A.2. For any 0 < \alpha < 2 one has the following pointwise representation:

(A.7) C\phi (f, \zeta )(x) = p.v.

\int 
\BbbT n

\phi (x+ z,x)\zeta (x+ z)(f(x+ z) - f(x)) dz.

Moreover, the following representation holds for any r > 0:

C\phi (f, \zeta )(x) =

\int 
\BbbT n

\phi (x+ z,x)\zeta (x+ z)(f(x+ z) - f(x) - z \cdot \nabla f(x)1| \bfz | <r) dz

+ (\zeta (x)br(x) + ar(x)) \cdot \nabla f(x),
(A.8)

where br is defined as before, and

(A.9) | ar| \infty \leqslant C| \nabla \zeta | \infty r2 - \alpha .

The proof proceeds by a direct application of Lemma A.1. For the residual drift
we obtain

ar(x) =

\int 
| \bfz | <r

\phi (x+ z,x)(\zeta (x+ z) - \zeta (x))zdz.

The bound (A.9) follows at once.

Appendix B. Commutator estimates. We will focus on the 1D case with \alpha \geqslant 
1 and establish necessary commutator estimates used in the proof of Theorem 1.5. The
estimates will be obtained in pointwise evaluation style, which makes them suitable
for applications in both L\infty -based settings and L2 settings. For this reason we pay
special attention to dependence on the top order terms. First, we obtain a basic
estimate on pointwise evaluation of the topological diffusion operator, which follows
from representation formula (A.3).

Lemma B.1. For every smooth function f and 0 \leqslant \gamma < 1 one has

(B.1) | L\phi f(x)| \lesssim r1 - 
\alpha 
2

\sqrt{} 
D\alpha [f \prime ](x) + r\gamma  - \alpha \| f\| C\gamma + r2 - \alpha | f \prime (x)| | \rho \prime | \infty 

for all r < R0 and x \in \BbbT .
Proof. We use decomposition (A.3) with further breakdown of the integral:

L\phi f(x) =

\int 
| z| <r

(f(x+ z) - f(x) - zf \prime (x))\phi dz + f \prime (x)br(x)

+

\int 
| z| >r

(f(x+ z) - f(x)) \phi dz = I + f \prime (x)br(x) + J.

Using that

(B.2) | f(x+ z) - f(x) - zf \prime (x)| =
\bigm| \bigm| \bigm| \bigm| \int z

0

(f \prime (x+ w) - f \prime (x)) dw

\bigm| \bigm| \bigm| \bigm| \lesssim \sqrt{} 
D\alpha f \prime (x)| z| 1+

\alpha 
2 ,

we obtain

| I| \lesssim r1 - 
\alpha 
2

\sqrt{} 
D\alpha f \prime (x).
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Next, due to (A.4),

| br(x)| \lesssim | \rho \prime | \infty r2 - \alpha .

And as for J , we use the H\"older continuity,

| J | \lesssim r\gamma  - \alpha \| f\| C\gamma .

Putting the estimates together yields (B.1).

Lemma B.2. For every smooth function f and 0 \leqslant \gamma < 1 one has

(B.3) | L\phi \prime f(x)| \lesssim r1 - 
\alpha 
2

\Bigl( 
| \rho \prime | \infty 

\sqrt{} 
D\alpha [f \prime ](x) + | f \prime | \infty 

\sqrt{} 
D\alpha [\rho \prime ](x)

\Bigr) 
+ r\gamma  - \alpha \| f\| C\gamma | \rho \prime | \infty 

+ r2 - \alpha | f \prime | \infty | \rho \prime | 2\infty 

for all r < R0 and x \in \BbbT .
Proof. Using the explicit formula for the kernel

\phi \prime =
h(z)

| z| \alpha d2\rho (x, x+ z)

\int 
[0,z]

\rho \prime (x+ \xi ) d\xi ,

we obtain

L\phi \prime f(x) =

\int 
\BbbT 

h(z)\delta zf(x)

| z| \alpha d2\rho (x, x+ z)

\int 
[0,z]

[\rho \prime (x+ \xi ) - \rho \prime (x)] d\xi dz

+ \rho \prime (x)
\int 
\BbbT 

h(z)

| z| \alpha  - 1d2\rho (x, x+ z)
\delta zf(x) dz = J1 + J2.

Note that J2 is precisely one of the topological-type operators with \tau = 2. So, estimate
(B.1) applies:

| J2| \lesssim r1 - 
\alpha 
2 | \rho \prime | \infty 

\sqrt{} 
D\alpha [f \prime ](x) + r\gamma  - \alpha \| f\| C\gamma | \rho \prime | \infty + r2 - \alpha | f \prime | \infty | \rho \prime | 2\infty .

As for J1, we estimate as usual\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
[0,z]

[\rho \prime (x+ \xi ) - \rho \prime (x)] d\xi 

\bigm| \bigm| \bigm| \bigm| \bigm| \lesssim \sqrt{} 
D\alpha [\rho \prime ](x)| z| 1+

\alpha 
2 .

So, using this together with the full derivative of f in the short range \{ | z| < r\} , and
H\"older continuity of f in the long range \{ | z| > r\} , we obtain

| J1| \lesssim r1 - 
\alpha 
2 | f \prime | \infty 

\sqrt{} 
D\alpha [\rho \prime ](x) + r\gamma  - \alpha \| f\| C\gamma | \rho \prime | \infty .

The statement of Lemma B.2 can be viewed as the commutator estimate of first
order since

L\phi \prime f = (L\phi f)
\prime  - L\phi f

\prime .

We will need to establish similar estimates for higher order commutators, although
without the use of H\"older continuity of f .
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Lemma B.3. Let f, \rho be smooth functions and 1 \leqslant \alpha < 2. Then for any x \in \BbbT 
the following inequalities hold: for k \geqslant 3

| (L\phi f)
(k)(x) - L\phi (f

(k))(x)| \lesssim 
\sqrt{} 
D\alpha [f (k)](x) +

\sqrt{} 
D\alpha [\rho (k)](x)

+
\sqrt{} 
D\alpha [f (k - 1)](x) +

\sqrt{} 
D\alpha [\rho (k - 1)](x)

+ | \rho (k)(x)| + | f (k)(x)| + 1,

(B.4)

and for any \varepsilon > 0 and k = 2

| (L\phi f)
\prime \prime (x) - L\phi (f

\prime \prime )(x)| \lesssim 
\sqrt{} 

D\alpha [f \prime \prime ](x) +
\sqrt{} 
D\alpha [\rho \prime \prime ](x)

+ \varepsilon | f \prime \prime | \infty | \rho \prime \prime | \infty + | f \prime \prime | \infty + c\varepsilon | \rho \prime \prime | \infty + c\varepsilon ,
(B.5)

with \lesssim meaning up to a constant factor

C = C(\rho , \=\rho , | \rho \prime | \infty , | f \prime | \infty , . . . , | f (k - 1)| \infty , | \rho (k - 1)| \infty ).

Proof. According to (2.11), we have to obtain estimates on all terms

L\phi (l) [f (k - l)](x) for 1 \leqslant l \leqslant k.

The kernel can be expanded using the Fa\`a di Bruno formula

\phi (l) =
\sum 
\bfj 

C\bfj 
h(z)

| z| \alpha d1+| \bfj | 
\rho (x, x+ z)

l\prod 
p=1

\Biggl[ \int 
[0,z]

\rho (p)(x+ \xi ) d\xi 

\Biggr] jp

,

where j = (j1, . . . , jl) is a multi-index with weight | j| = j1 + \cdot \cdot \cdot + jl, and

1j1 + 2j2 + \cdot \cdot \cdot + ljl = l.

Let us take into consideration operators corresponding to the summands in the above
expansion:

L\bfj f
(k - l)(x) =

\int 
\BbbT 

h(z)\delta zf
(k - l)(x)

| z| \alpha d1+| \bfj | 
\rho (x, x+ z)

l\prod 
p=1

\Biggl[ \int 
[0,z]

\rho (p)(x+ \xi ) d\xi 

\Biggr] jp

dz.

Let us consider separately one endpoint case when the index reaches its corner value
j = (0, . . . , 0, 1). For this particular index the density receives its maximal derivative:

L\bfj f
(k - l)(x) =

\int 
\BbbT 

h(z)\delta zf
(k - l)(x)

| z| \alpha d2\rho (x, x+ z)

\int 
[0,z]

\rho (l)(x+ \xi ) d\xi dz

=

\int 
\BbbT 

h(z)\delta zf
(k - l)(x)

| z| \alpha d2\rho (x, x+ z)

\int 
[0,z]

(\rho (l)(x+ \xi ) - \rho (l)(x)) d\xi dz

+ \rho (l)(x)

\int 
\BbbT 

h(z)\delta zf
(k - l)(x)

| z| \alpha  - 1d2\rho (x, x+ z)
dz = J1 + J2.

The operator involved in J2 is exactly of topological type with \tau = 2. So, we apply
(B.1) directly with r \sim \varepsilon and \gamma = 0:

| J2| \lesssim | \rho (l)(x)| 
\biggl( 
\varepsilon 
\sqrt{} 
D\alpha [f (k - l+1)](x) + c\varepsilon + | f (k - l+1)(x)| 

\biggr) 
.
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Here and in the following we dismiss all the quantities depending on the lower order
terms \rho , \=\rho , | \rho \prime | \infty , | f \prime | \infty , . . . , | f (k - 1)| \infty , | \rho (k - 1)| \infty . Using

D\alpha [f
(k - l+1)](x) \lesssim | f (k - l+2)| \infty ,

we see that all the terms with l = 3, . . . , k  - 1 are of lower order (this only applies if
k \geqslant 4). For l = k, we have

| J2| \lesssim \varepsilon | \rho (k)(x)| | f \prime \prime | \infty + c\varepsilon .

For l = 1, we have

| J2| \lesssim 
\sqrt{} 
D\alpha [f (k)](x) + | f (k)(x)| .

For l = 2,

| J2| \lesssim \varepsilon | \rho \prime \prime | \infty 
\sqrt{} 

D\alpha [f (k - 1)](x) + c\varepsilon | \rho \prime \prime | \infty .

Summing up over l, we have

k\sum 
l=1

| J2| \lesssim 
\sqrt{} 

D\alpha [f (k)](x) + | f (k)(x)| + \varepsilon | \rho (k)(x)| | f \prime \prime | \infty + \varepsilon | \rho \prime \prime | \infty 
\sqrt{} 

D\alpha [f (k - 1)](x) + c\varepsilon | \rho \prime \prime | \infty + c\varepsilon .

As for the J1 terms, for all 2 \leqslant l \leqslant k  - 2, we simply estimate

| J1| \lesssim | f (k - l+1)| \infty | \rho (l+1)| \infty \lesssim C.

For l = 1,

| J1| \lesssim | \rho \prime \prime | \infty 
\int 
| z| \leqslant \varepsilon 

| \delta zf (k - 1)(x)| 
| z| \alpha dz + c\varepsilon | f (k - 1)| \infty | \rho \prime | \infty \lesssim \varepsilon 1 - \alpha /2| \rho \prime \prime | \infty 

\sqrt{} 
D\alpha [f (k - 1)](x) + c\varepsilon .

Resetting \varepsilon 1 - \alpha /2 \rightarrow \varepsilon this term has been accounted for. For l = k  - 1,

| J1| \lesssim \varepsilon | f \prime \prime | \infty 
\sqrt{} 
D\alpha [\rho (k - 1)](x) + c\varepsilon .

Finally, for l = k, we have

| J1| \lesssim 
\sqrt{} 
D\alpha [\rho (k)](x).

To summarize, the corner-case terms add up to

k\sum 
l=1

| L\bfj f
(k - l)(x)| \lesssim 

\sqrt{} 
D\alpha [f (k)](x) +

\sqrt{} 
D\alpha [\rho (k)](x)

+ \varepsilon | f \prime \prime | \infty 
\sqrt{} 

D\alpha [\rho (k - 1)](x) + \varepsilon | \rho \prime \prime | \infty 
\sqrt{} 
D\alpha [f (k - 1)](x)

+ \varepsilon | \rho (k)(x)| | f \prime \prime | \infty + | f (k)(x)| + c\varepsilon | \rho \prime \prime | \infty + c\varepsilon .

(B.6)

Let us now consider off-corner cases, j = (j1, . . . , jl - 1, 0), 2 \leqslant l \leqslant k (obviously for
l = 1 there is only one term with j = (1) which is a corner case). Since | \delta zf (k - l)| \leqslant 
| z| | f (k - 1)| \infty \lesssim C| z| , the order of singularity of the kernel becomes \alpha + | j| , while the
order of the product in the numerator is | j| . So, for \alpha \geqslant 1 this operator is still
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hypersingular, which means extra care is needed to find additional cancellations. Let
us denote

ap =

\int 
[0,z]

\rho (p)(x+ \xi ) d\xi , bp = | z| \rho (p)(x),

and write the product as follows:

l - 1\prod 
p=1

ajpp = aj11 \cdot \cdot \cdot ajl - 2

l - 2 (a
jl - 1

l - 1  - b
jl - 1

l - 1 ) + aj11 \cdot \cdot \cdot ajl - 3

l - 3 (a
jl - 2

l - 2  - b
jl - 2

l - 2 )b
jl - 1

l - 1 + \cdot \cdot \cdot 

+ (aj11  - bj11 )bj22 \cdot \cdot \cdot bjl - 1

l - 1 +

l - 1\prod 
p=1

bjpp .

Now, for p \leqslant k  - 2 we simply use

| ajpp  - bjpp | \leqslant | z| 1+jp | \rho (p+1)| \infty | \rho (p)| jp - 1
\infty \lesssim | z| 1+jp .

So, the product in this case is bounded by \lesssim | z| 1+| \bfj | , and the singularity order reduces
to \alpha  - 1 < 1. Thus, these terms are bounded by \lesssim C.

For p = k  - 1, if jk - 1 > 0, we use

| ajk - 1

k - 1  - b
jk - 1

k - 1 | \lesssim | z| \alpha 2 +jk - 1

\sqrt{} 
D\alpha \rho (k)(x).

Thus, the order of the product is \alpha 
2 + | j| , and the order of the operator becomes

\alpha /2 < 1. So, this term is bounded by \lesssim 
\sqrt{} 
D\alpha \rho (k)(x), which has been accounted for

earlier.
It remains to estimate the integral for the pure b-product:

l - 1\prod 
p=1

bjpp = | z| | \bfj | 
l - 1\prod 
p=1

(\rho (p)(x))jp .

The product of densities is obviously subcritical and comes out of the integral. What
remains is another topological operator:\int 

\BbbT 

h(z)\delta zf
(k - l)(x)

| z| \alpha  - | \bfj | d1+| \bfj | 
\rho (x, x+ z)

dz.

This involves the generalized kernel (A.1) with \tau = 1 + | j| . Applying estimate (B.1)
with \gamma = 0 and fixed absolute r \sim 1, we obtain the bound

\lesssim 
\sqrt{} 
D\alpha [f (k - l+1)](x) + | f (k - l)| \infty + | f (k - l+1)(x)| .

Recalling that we are in the range 2 \leqslant l \leqslant k, we have

| f (k - l)| \infty + | f (k - l+1)(x)| \lesssim 1,

while for l > 2 the dissipative term is also subcritical, and for l = 2, term
\sqrt{} 
D\alpha [f (k - 1)](x)

has been accounted for.
Thus, estimate (B.4) captures all the terms we encountered. It remains to notice

that for k \geqslant 3, the second derivative terms become of lower order, and we can set
\varepsilon \sim 1 to obtain (B.4). For k = 2 we obtain (B.5). This finishes the proof.
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Finally, we have the needed estimates on the lower order derivatives (L\phi f)
(l),

k \geqslant 2, with the use of the above results. So, for any k \geqslant 2 and with the same
convention of using \lesssim up to a constant C(\rho , \=\rho , | \rho \prime | \infty , | f \prime | \infty , . . . , | f (k - 1)| \infty , | \rho (k - 1)| \infty ),
we deduce from Lemma B.1 with \gamma = 0 and r \sim 1,

| L\phi (f
(k - 1))(x)| \lesssim 

\sqrt{} 
D\alpha [f (k)](x) + | f (k)(x)| + 1,

| L\phi (f
(k - 2))(x)| \lesssim 

\sqrt{} 
D\alpha [f (k - 1)](x) + 1,

| L\phi (f
(l))(x)| \lesssim 1, 0 \leqslant l \leqslant k  - 3.

In combination with the commutator estimates established in Lemma B.3, we obtain
the following lemma.

Lemma B.4. For any smooth function f and k \geqslant 2, we have

| (L\phi f)
(k - 1)(x)| \lesssim 

\sqrt{} 
D\alpha [f (k)](x) + | f (k)(x)| (B.7)

+
\sqrt{} 
D\alpha [f (k - 1)](x) +

\sqrt{} 
D\alpha [\rho (k - 1)](x) + 1,

| (L\phi f)
(k - 2)(x)| \lesssim 

\sqrt{} 
D\alpha [f (k - 1)](x) + 1,(B.8)

| (L\phi f)
(l)(x)| \lesssim 1, 0 \leqslant l \leqslant k  - 3,(B.9)

with \lesssim meaning up to a constant factor

C = C(\rho , \=\rho , | \rho \prime | \infty , | f \prime | \infty , . . . , | f (k - 1)| \infty , | \rho (k - 1)| \infty ).
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